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Abstract

In the past few years we have seen a surge in the theory of finite
Markov chains, by way of new techniques to bounding the convergence
to stationarity. This includes functional techniques such as logarithmic
Sobolev and Nash inequalities, refined spectral and entropy techniques,
and isoperimetric techniques such as the average and blocking conduc-
tance and the evolving set methodology. We attempt to give a more or
less self-contained treatment of some of these modern techniques, after
reviewing several preliminaries. We also review classical and modern
lower bounds on mixing times. There have been other important con-
tributions to this theory such as variants on coupling techniques and
decomposition methods, which are not included here; our choice was
to keep the analytical methods as the theme of this presentation. We
illustrate the strength of the main techniques by way of simple exam-
ples, a recent result on the Pollard Rho random walk to compute the
discrete logarithm, as well as with a brief and improved analysis of the
Thorp shuffle.
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Introduction

Monte Carlo methods have been in use for a long time in statistical
physics and other fields for sampling purposes. However, the computer
scientists’ novel idea [43] of reducing the problem of approximately
counting the size of a large set of combinatorial objects to that of
near-uniform sampling from the same set, gave the study of Markov
chain Monte Carlo (MCMC) algorithms an entirely new purpose, and
promptly spawned an active subtopic of research. We recall here that
the work of [43] shows that in fact, under the technical assumption of
so-called self-reducibility, approximate counting of the size of a set in
polynomial time is feasible if and only if one is able to sample from the
set with nearly uniform distribution, also in polynomial time. In terms
of the finite Markov chain underlying an MCMC algorithm, the latter
problem translates to designing and analyzing a Markov chain with
a prescribed stationary measure, with a view (and hope) to providing
rigorous estimates on the polynomial fastness of the rate of convergence
to stationarity of the chain. Thus the classical subject of finite Markov
chains has received much renewed interest and attention.

To add concreteness to the above story, we briefly mention as ex-
amples of large sets of combinatorial objects, the set of matchings of a
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4 Introduction

given (as input) bipartite graph [39, 41], the set of proper colorings of
a given graph using a fixed number of colors [32], the number of ma-
trices having non-negative integer entries and with prescribed row and
column sums [15], etc. Albeit combinatorial, a non-discrete estimation
problem which received significant devotion, both by way of algorithms
and analytical techniques, is that of (approximately) computing the
volume of a high-dimensional convex body (see [52, 53] and references
therein). There have already been some very good surveys focusing on
such combinatorial, computational and statistical physics applications
of finite Markov chains. For an elaboration of the above premise, and a
crash course on several basic techniques, we recommend the excellent
article of Jerrum [38]. Towards the end of this introduction, we provide
other pointers to existing literature on this subject. However, much of
the theory surveyed in this article is rather recent theoretical (analyt-
ical) development and is so far unavailable in a unified presentation.
The significance of these new methods is as follows.

The rate of convergence to stationarity of a finite Markov chain is
typically measured by the so-called mixing time, defined as the first
time τ by which the L1 (or more generally, Lp) distance between the
distribution at time τ and the stationary distribution falls below a small
threshold, such as 1/2e. It is classical and elementary to show that
the inverse spectral gap of a lazy reversible Markov chain captures
the mixing time (in L1 and L2) up to a factor of log(1/π∗), where
π∗ = minx π(x) denotes the smallest entry in the stationary probability
(vector) π of the chain. While the more technical logarithmic Sobolev
constant captures the L2-mixing time up to a factor of log log(1/π∗), it
is typically much harder to bound – to mention a specific example, the
exact constant is open for the 3-point space with arbitrary invariant
measure; also in a few cases, the log-Sobolev constant is known not
to give tight bounds on the L1-mixing time. The main strength of the
spectral profile techniques and the evolving set methodology considered
in this survey seems to be that of avoiding extra penalty factors such as
log log(1/π∗). These extra pesky factors can indeed be non-negligible
when the state space is of exponential (or worse) size in the size of
the input. In the present volume, the above is illustrated with a couple
of simple examples, and with the now-famous Thorp shuffle, for which
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an improved O(d29) mixing time is described, building on the proof of
Morris that proved the first polynomial (in d) bound of O(d44) – here
the number of cards in the deck is 2d, and hence the state space has size
2d!, resulting in a log log(1/π∗) factor of only O(d), while a log(1/π∗)
factor would have yielded an all too costly O(d2d).

The approach to L2-mixing time using the spectral profile has the
additional advantage of yielding known (upper) estimates on mixing
time, under a log-Sobolev inequality and/or a Nash-type inequality.
Thus various functional analytic approaches to mixing times can be
unified with the approach of bounding the spectral profile. The one
exception to this is the approach to stationarity using relative entropy;
the corresponding entropy constant capturing the rate of decay of en-
tropy has also been hard to estimate.

A brief history of the above development can perhaps be summa-
rized as follows. A fundamental contribution, by way of initiating sev-
eral subsequent works, was made by Lovász and Kannan in [51] in
which they introduced the notion of average conductance to bound the
total variation mixing time. This result was further strengthened and
developed by Morris and Peres using the so-called evolving sets, where
they analyze a given chain by relating it to an auxiliary (dual) chain on
subsets of the states of the original chain. While this was introduced in
[65] in a (martingale-based) probabilistic language, it turns out to be,
retrospectively, an independent and alternative view of the notion of a
Doob transform introduced and investigated by Diaconis and Fill [22].
Further refinement and generalization of the evolving sets approach was
done in detail by [61]. The functional analog of some of this is done via
the spectral profile, developed for the present context of finite Markov
chains, in [34], while having its origins in the developments by [4] and
[18] in the context of manifolds.

Besides summarizing much of the above recent developments in this
exciting topic, we address some classical aspects as well. In discrete-
time, much of the literature uses laziness assumptions to avoid annoying
technical difficulties. While laziness is a convenient assumption, it slows
down the chain by a factor of 2, which may not be desirable in practice.
We take a closer look at this issue and report bounds which reflect the
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precise dependence on laziness. The notion of modified conductance
circumvents laziness altogether, and we discuss this aspect briefly and
compare it to bounds derived from the functional approach. Further
details on the modified conductance and its usefulness can be found
in [62]. Another issue is that of the role of reversibility (a.k.a. detailed
balance conditions). We tried to pay particular attention to it, due
to current trend in the direction of analyzing various nonreversible
Markov chains. Although often a convenient assumption, we avoid as
much as possible this additional assumption. In particular, we include
a proof of the lower bound on the total variation mixing time in terms
of the second eigenvalue in the general case. Besides providing upper
and lower bounds for the mixing time of reversible and non-reversible
chains, we report recent successes (with brief analysis) in the analysis
of some non-reversible chains; see for example, the Pollard Rho random
walk for the discrete logarithm problem and the Thorp shuffle.

In Chapter 1 we introduce notions of mixing times and prove the
basic upper bounds on these notions using Poincaré and logarithmic
Sobolev type functional constants. In Chapter 2 we move on to recent
results using the spectral profile, as opposed to using simply the second
eigenvalue. In Chapter 3 we review the evolving set methods. Our treat-
ment of lower bounds on mixing times is provided in Chapter 4. We
consider several examples for illustration in Chapter 5. In the penul-
timate chapter, we gather a few recent results together. This includes
recent results on the so-called fastest mixing Markov chain problem,
and a recent theorem [57] from perturbation theory of finite Markov
chains; this theorem relates the stability of a stochastic matrix (sub-
ject to perturbations) to the rate of convergence to equilibrium of the
matrix. We also recall here an old but not so widely known character-
ization of the spectral gap, which seems worth revisiting due to recent
results utilizing this formulation. The Appendix contains a discussion
on the relations between the distances considered in this paper, and
others such as relative pointwise (L∞) distance.

We mention here a few additional sources, by way of survey articles,
for the interested reader. For a good overview of the basic techniques
in estimating the mixing times of finite Markov chains, see [40, 38, 37].
Other updates include the tutorial lectures of [45], [69]. Also a recent
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manuscript of Dyer et al. [29] describes several comparison theorems
for reversible as well as nonreversible Markov chains.

Acknowledgments. We thank Pietro Caputo and Eric Carlen for several
helpful discussions while preparing this manuscript.





1

Basic Bounds on Mixing Times

1.1 Preliminaries: Distances and mixing times

Let (Ω,P, π) denote a transition probability matrix (or Markov kernel)
of a finite Markov chain on a finite state space Ω with a unique invariant
measure π. That is

P(x, y) ≥ 0, for all x, y ∈ Ω, and
∑

y∈Ω

P(x, y) = 1, for all x ∈ Ω.

∑

x∈Ω

π(x)P(x, y) = π(y), for all y ∈ Ω.

We assume throughout this paper that P is irreducible (i.e. Ω is strongly
connected under P) and that π has full support (Ω). The minimal
holding probability α ∈ [0, 1] satisfies ∀x ∈ Ω : P(x, x) ≥ α, and if
α ≥ 1/2 the chain is said to be lazy. If A,B ⊂ Ω the ergodic flow is
Q(A,B) =

∑
x∈A, y∈B π(x)P(x, y), while Ac = Ω\A is the complement.

For standard definitions and introduction to finite Markov chains, we
refer the reader to [67] or [1].

It is a classical fact that if P is aperiodic then the measures Pn(x, ·)
approach π as n→∞. Alternatively, let kx

n(y) = Pn(x, y)/π(y) denote
the density with respect to π at time n ≥ 0, or simply kn(y) when the

9



10 Basic Bounds on Mixing Times

start state or the start distribution is unimportant or clear from the
context. Then the density kx

n(y) converges to 1 as n → ∞. A proper
quantitative statement may be stated using any one of several norms.
In terms of Lp-distance

‖kn − 1‖p
p,π =

∑

y∈Ω

|kn(y)− 1|p π(y) 1 ≤ p < +∞ .

When p = 1 and p = 2 these are closely related to the total varia-
tion distance and variance, respectively, such that if µ is a probability
distribution on Ω, then

‖µ− π‖TV =
1
2

∥∥∥µ
π
− 1

∥∥∥
1,π

=
1
2

∑

y∈Ω

|µ(y)− π(y)|

Varπ(µ/π) =
∥∥∥µ
π
− 1

∥∥∥
2

2,π
=

∑

y∈Ω

π(y)
(
µ(y)
π(y)

− 1
)2

Another important measure of closeness (but not a norm) is the infor-
mational divergence,

D(Pn(x, ·)||π) = Entπ(kx
n) =

∑

y∈Ω

Pn(x, y) log
Pn(x, y)
π(y)

,

where the entropy Entπ(f) = Eπf log f
Eπf .

Each of these distances are convex, in the sense that if µ and ν

are two distributions, and s ∈ [0, 1] then dist((1 − s)µ + sν, π) ≤
(1 − s) dist(µ, π) + s dist(ν, π). For instance, D(µ||π) = Entπ(µ/π) =
Eπ

µ
π log µ

π is convex in µ because f log f is convex. A convex distance
dist(µ, π) satisfies the condition

dist(σPn, π) = dist

(∑

x∈Ω

σ(x)Pn(x, ·), π
)

≤
∑

x∈Ω

σ(x)dist (Pn(x, ·), π)

≤ max
x∈Ω

dist(Pn(x, ·), π) , (1.1)

and so distance is maximized when the initial distribution is concen-
trated at a point. To study the rate of convergence it then suffices to
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study the rate when the initial distribution is a point mass δx (where
δx is 1 at point x ∈ Ω and 0 elsewhere; likewise, let 1A be one only on
set A ⊂ Ω).

Definition 1.1. The total variation, relative entropy and L2 mixing
times are defined as follows.

τ(ε) = min{n : ∀x ∈ Ω, ‖Pn(x, ·)− π‖TV ≤ ε}

τD(ε) = min{n : ∀x ∈ Ω, D(Pn(x, ·)||π) ≤ ε}

τ2(ε) = min{n : ∀x ∈ Ω, ‖kx
n − 1‖2,π ≤ ε}

One may also consider the chi-square (χ2) distance, which is just
Var(kx

n) and mixes in τχ2(ε) = τ2(
√
ε). In the Appendix it is seen that

τ2(ε) usually gives a good bound on L∞ convergence, and so for most
purposes nothing stronger than L2 mixing need be considered.

An important concept in studying Markov chains is the no-
tion of reversibility. The time-reversal P∗ is defined by the identity
π(x)P∗(x, y) = π(y)P(y, x), x, y ∈ Ω and is the adjoint of P in the
standard inner product for L2(π), that is 〈f,Pg〉π = 〈P∗f, g〉π where

〈f, g〉π =
∑

x∈Ω

π(x)f(x)g(x)

and a matrix M acts on a function f : Ω → R as

M f(x) =
∑

y∈Ω

M(x, y)f(y) .

A useful property of the reversal is that kn = P∗kn−1, and inductively
kn = (P∗)nk0. If P∗ = P then P is said to be time-reversible, or to
satisfy the detailed balance condition. Given any Markov kernel P, two
natural reversible chains are the additive reversibilization P+P∗

2 , and
multiplicative reversibilization PP∗.

A straightforward way to bound the L2-distance is to differenti-
ate the variance. In Lemma 1.4 it will be found that d

dtVar(ht) =
−2E(ht, ht), where E(f, g) denotes a Dirichlet form, as defined below,
and ht the continuous time density defined in the following section.
More generally, the Dirichlet form can be used in a characterization of
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eigenvalues of a reversible chain (see Lemma 1.21), and to define the
spectral gap and the logarithmic Sobolev type inequalities:

Definition 1.2. For f, g : Ω → R, let E(f, g) = EP(f, g) denote the
Dirichlet form,

E(f, g) = 〈f, (I− P)g〉π =
∑
x,y

f(x) (g(x)− g(y))P(x, y)π(x) .

If f = g then

E(f, f) =
1
2

∑

x,y∈Ω

(f(x)− f(y))2P(x, y)π(x) , (1.2)

and
EP(f, f) = EP∗(f, f) = EP+P∗

2
(f, f) , (1.3)

while if P is reversible then also E(f, g) = E(g, f).
Finally, we recall some notation from complexity theory which will

be used occasionally. Given positive functions f, g : R+ → R+ we say
that f = O(g) if f ≤ c g for some constant c ≥ 0, while f = Ω(g) if
f ≥ c g for a constant c ≥ 0, and finally f = Θ(g) if c1 g ≤ f ≤ c2 g

for constants c1, c2 ≥ 0. For instance, while attempting to analyze an
algorithm requiring τ(n) = 3n4 + n steps to terminate on input of size
n, it might be found that τ(n) = O(n5), or τ(n) = Ω(n log n), when in
fact τ(n) = Θ(n4).

1.2 Continuous Time

Many mixing time results arise in a natural, clean fashion in the con-
tinuous time setting, and so we consider this case first. The arguments
developed here will then point the way for our later consideration of
discrete time results.

Let L denote the (discrete) Laplacian operator given by L = −(I−
P). Then for t ≥ 0, Ht = etL represents the continuized chain [1] (or
the heat kernel) corresponding to the discrete Markov kernel P. The
continuized chain simply represents a Markov process {Xt}t≥0 in Ω
with initial distribution, µ0 (say), and transition matrices

Ht = e−t(I−P) =
∞∑

n=0

tnLn

n!
= e−t

∞∑

n=0

tnPn

n!
, t ≥ 0,
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with the generator L = −(I−P). Thus Ht(x, y) denotes the probability
that the rate one continuous Markov chain having started at x is at y
at time t. Let hx

t (y) = Ht(x, y)/π(y), for each y ∈ Ω, denote its density
with respect to π at time t ≥ 0, and ht(y) when the start state or the
start distribution is unimportant or clear from the context. Also, let

H∗
t = etL

∗
=

∞∑

n=0

tn(L∗)n

n!

be the semigroup associated to the dual L∗ = −(I−P∗). The following
is elementary and a useful technical fact.

Lemma 1.3. For any h0 and all t ≥ 0, ht = H∗
t h0. Consequently, for

any x ∈ Ω,
dht(x)
dt

= L∗ht(x).

Using Lemma 1.3, the following lemma is easy to establish.

Lemma 1.4.

d

dt
Var(ht) = −2E(ht, ht) (1.4)

d

dt
Ent(ht) = −E(ht, log ht) (1.5)

Proof. Indeed,

d

dt
Var(ht) =

∫
d

dt
h2

tdπ = 2
∫
htL∗htdπ

= 2
∫
L(ht)htdπ = −2E(ht, ht).

d

dt
Ent(ht) =

∫
d

dt
ht log htdπ =

∫
(log ht + 1)L∗htdπ

=
∫
L(log ht)htdπ = −E(ht, log ht).
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The above motivates the following definitions of the spectral gap λ
and the entropy constant ρ0.

Definition 1.5. Let λ > 0 and ρ0 > 0 be the optimal constants in the
inequalities:

λVarπf ≤ E(f, f), for all f : Ω → R.

ρ0Entπf ≤ E(f, log f), for all f : Ω → R+. (1.6)

When it is necessary to specify the Markov chain K being considered
then use the notation λK.

Lemma 1.21 (Courant-Fischer theorem) shows that for a reversible
Markov chain, the second largest eigenvalue λ1 (of P) satisfies the sim-
ple relation 1 − λ1 = λ. However, reversibility is not needed for the
following result.

Corollary 1.6. Let π∗ = minx∈Ω π(x). Then, in continuous time,

τ2(ε) ≤ 1
λ

(
1
2

log
1− π∗
π∗

+ log
1
ε

)
(1.7)

τD(ε) ≤ 1
ρ0

(
log log

1
π∗

+ log
1
ε

)
. (1.8)

Proof. Simply solve the differential equations,

d

dt
Var(hx

t ) = −2E(hx
t , h

x
t ) ≤ −2λVar(hx

t ) (1.9)

and
d

dt
Ent(hx

t ) = −E(hx
t , log hx

t ) ≤ −ρ0 Ent(hx
t ), (1.10)

and note that Var(h0) ≤ 1−π∗
π∗ and Ent(h0) ≤ log 1

π∗ (e.g. by equation
(1.1)).

It is worth noting here that the above functional constants λ and
ρ0 indeed capture the rate of decay of variance and relative entropy,
respectively, of Ht for t > 0:
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Proposition 1.7. If c > 0 then
(a) Varπ(Htf) ≤ e−ctVarπf , for all f and t > 0, if and only if λ ≥ c.
(b) Entπ(Htf) ≤ e−ctEntπf , for all f > 0 and t > 0, if and only if

ρ0 ≥ c.

Proof. The “if” part of the proofs follows from (1.9) and (1.10). The
only if is also rather elementary and we bother only with that of part
(b): Starting with the hypothesis, we may say, for every f > 0, and for
t > 0,

1
t

(
Entπ(Htf)− Entπf

)
≤ 1
t

(
e−ct − 1

)
Entπf.

Letting t ↓ 0, we get −E(f, log f) ≤ −cEntπf .

While there have been several techniques (linear-algebraic and
functional-analytic) to help bound the spectral gap, the analogous prob-
lem of getting good estimates on ρ0 seems challenging. The following
inequality relating the two Dirichlet forms introduced above also moti-
vates the study of the classical logarithmic Sobolev inequality. In prac-
tice this is a much easier quantity to bound, and moreover it will later
be shown to bound the stronger L2 mixing time, and hence L∞ as well.

Lemma 1.8. If f ≥ 0 then

2E(
√
f,

√
f) ≤ E(f, log f)

Proof. Observe that

a(log a− log b) = 2a log
√
a√
b
≥ 2a

(
1−

√
b√
a

)
= 2

√
a (
√
a−

√
b)

by the relation log c ≥ 1− c−1. Then

E(f, log f) =
∑
x,y

f(x)(log f(x)− log f(y))P(x, y)π(x)

≥ 2
∑
x,y

f1/2(x)(f1/2(x)− f1/2(y))P(x, y)π(x)

= 2E(
√
f,

√
f)
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Let ρP > 0 denote the logarithmic Sobolev constant of P defined as
follows.

Definition 1.9.

ρ = ρP = inf
Entf2 6=0

E(f, f)
Entf2

.

Proposition 1.10. For every irreducible chain P,

2ρ ≤ ρ0 ≤ 2λ .

Proof. The first inequality is immediate, using Lemma 1.8. The second
follows from applying (1.6) to functions f = 1 + εg, for g ∈ L2(π)
with Eπg = 0. Assume ε ¿ 1, so that f ≥ 0. Then using the Taylor
approximation, log(1 + εg) = εg − 1/2(ε)2g2 + o(ε2), we may write

Entπ(f) =
1
2
ε2π(g2) + o(ε2),

and

E(f, log f) = −εEπ((Lg) log(1 + εg)) = ε2E(g, g) + o(ε2).

Thus starting from (1.6), and applying to f as above, we get

ε2E(g, g) ≥ ρ0

2
ε2Eπg

2 + o(ε2).

Canceling ε2 and letting ε ↓ 0, yields the second inequality of the propo-
sition, since Eπg = 0.

Remark 1.11. The relation 2ρ ≤ 2λ found in the lemma can be
strengthened somewhat to ρ ≤ λ/2, by a direct application of the
method used above. Under the additional assumption of reversibility,
the inequality in Lemma 1.8 can be strengthened by a factor of 2 to
match this, as explained in [25], in turn improving the above proposi-
tion to 4ρ ≤ ρ0 ≤ 2λ for reversible chains.
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1.3 Discrete Time

We now turn our attention to discrete time. A mixing time bound in
terms of the spectral gap will be shown in a fashion similar to that
in continuous time. There seems to be no discrete-time analog of the
modified log-Sobolev bound on relative entropy, although in Chapter 3
a bound in terms of Evolving Set will be found. We defer consideration
of the log-Sobolev constant to Section 2.1.

In discrete time we consider two approaches to mixing time, both of
which are equivalent. The first approach involves operator norms, and
is perhaps the more intuitive of the two methods.

Proposition 1.12. In discrete time,

τ2(ε) ≤
⌈

1
1− ‖P∗‖ log

1
ε
√
π∗

⌉
,

where P∗(x, y) = π(y)P(y,x)
π(x) , π∗ = minx∈Ω π(x) and

‖P∗‖ = sup
f :Ω→R,Ef=0

‖P∗f‖2

‖f‖2
.

This result has appeared in mixing time literature in many equiv-
alent forms. A few can be found in Remark 1.19 at the end of this
section.

Proof. Since ki+1 − 1 = P∗(ki − 1) and E(ki − 1) = 0 for all i then

‖kn − 1‖2 = ‖P∗n(k0 − 1)‖2 ≤ ‖P∗‖n‖k0 − 1‖2 .

Solving for when this expression drops to ε and using the approxima-
tions log x ≤ −(1− x) and ‖k0 − 1‖2 ≤

√
1−π∗

π∗ gives the result.

A good example in which this bound has been used in practice can
be found in Section 5.2, in which we discuss a recent proof that Pollard’s
Rho algorithm for discrete logarithm requires order

√
n log3 n steps to

detect a collision, and likely determine the discrete log.
In Proposition 1.12 the mixing bound followed almost immediately

from the definition. However, there is an alternate approach to this
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problem which bears more of a resemblance to the continuous time
result and is more convenient for showing refined bounds.

The discrete time analog of differentiating Var(ht) is to take the
difference Var(kn)−Var(kn−1), or more generally, Var(P∗f)−Var(f).
The analog of equation (1.4) is the following lemma of Mihail [55], as
formulated by Fill [30].

Lemma 1.13. Given Markov chain P and function f : Ω → R, then

Var(P∗f)−Var(f) = −EPP∗(f, f) ≤ −Var(f)λPP∗ .

Proof. Note that Eπf = Eπ(Kf) for any transition probability matrix
K, because

∑
x π(x)K(x, y) = π(y). It follows that

Var(P∗f)−Var(f) = 〈P∗f,P∗f〉π − 〈f, f〉π = −〈f, (I− PP∗)f〉π ,

giving the equality. The inequality follows from Definition 1.5 of λPP∗ .

In Lemma 1.21 it will be found that 1− λPP∗ is the largest non-trivial
singular value of P.

Proceeding, we now bound mixing time of a discrete time chain.

Corollary 1.14. A discrete time Markov chain P satisfies

τ2(ε) ≤
⌈

2
λPP∗

log
1

ε
√
π∗

⌉
.

Hence, to study mixing in discrete-time consider the multiplicative
reversibilization PP∗, and in continuous-time consider the additive re-
versibilization P+P∗

2 (as E(f, f) = EP+P∗
2

(f, f), and so λ = λP+P∗
2

).

Proof. Recall the n-step density satisfies kn = (P∗)n k0. Then, by
Lemma 1.13, Var(kn) ≤ Var(kn−1) (1− λPP∗), and by induction

Var(kn) ≤ Var(k0) (1− λPP∗)
n . (1.11)

The result follows by solving for when variance drops to ε2 and using
the approximation log(1− λPP∗) ≤ −λPP∗ .
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It is preferable to work with P instead of PP∗. Several simplifications
make this possible.

Corollary 1.15. In discrete time, a Markov chain with holding prob-
ability α satisfies

τ2(ε) ≤
⌈

1
αλ

log
1

ε
√
π∗

⌉
.

For a reversible Markov chain,

τ2(ε) ≤
⌈

1
1− λmax

log
1

ε
√
π∗

⌉
≤

⌈
1

min{2α, λ} log
1

ε
√
π∗

⌉
,

where λmax = max{λ1, |λn−1|} when λ1 = 1 − λ is the largest non-
trivial eigenvalue of P and λn−1 ≥ −1 is the smallest eigenvalue.

Proof. Observe that ∀x ∈ Ω : P∗(x, x) = P(x, x) ≥ α, and so

π(x) PP∗(x, y) ≥ π(x) P(x, x) P∗(x, y) + π(x) P(x, y) P∗(y, y)

≥ απ(y)P(y, x) + απ(x)P(x, y) .

It follows from Equation 1.2 that

EPP∗(f, f) ≥ α E(f, f) + α E(f, f) = 2αE(f, f) , (1.12)

and so λPP∗ ≥ 2αλ. The first bound then follows from Corollary 1.14.
For the reversible case, we require Lemmas 1.20 and 1.21, to be

shown in the next section. Lemma 1.20 shows that P has an eigenbasis.
If λi is an eigenvalue of P with corresponding right eigenvector vi then
PP∗ vi = P2 vi = λ2

i vi, and so the eigenvalues of PP∗ are just {λ2
i }. By

Lemma 1.21 (to be shown later) it follows that

λPP∗ = λP2 = 1−max{λ2
1, λ

2
n−1} = 1− λ2

max .

Solving equation (1.11) then gives the first reversible bound.
Finally, if P is reversible then λn−1−α

1−α is the smallest eigenvalue of the
reversible Markov chain P−α I

1−α , so Lemma 1.20 shows that λn−1−α
1−α ≥ −1.

Re-arranging the inequality gives the relation −λn−1 ≤ 1− 2α, and so
λmax = max{λ1,−λn−1} ≤ 1−min{λ, 2α}.
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Remark 1.16. In the proof above it was found that EPP∗(f, f) ≥
2αE(f, f), and so in particular λPP∗ ≥ 2αλ. Since EP(f, f) =
EP+P∗

2
(f, f) then this is a statement that the additive reversibilization

can be used to lower bound the multiplicative reversibilization.
A related inequality holds in the opposite direction as well. Recall

from the proof above that if P is reversible then λPP∗ = 1 − λ2
max.

Re-arranging this shows that

1− λmax = 1−
√

1− λPP∗ ≥ 1
2
λPP∗ .

In Theorem 5.10 we will see that this holds, with λmax = maxλi 6=1 |λi|,
even for non-reversible walks with complex eigenvalues.

In summary, if α is the holding probability, and P is reversible then

λ ≥ 1
2
λPP∗ ≥ αλ ,

while in general if {λi} are the eigenvalues of P then

1−max
λi 6=1

|λi| ≥ 1
2
λPP∗ ≥ αλ .

Remark 1.17. We now show that, as mentioned earlier, the two ap-
proaches to bounding mixing in this section are equivalent.

1− λPP∗ = sup
f :Ω→R

Var(f)− EPP∗(f, f)
Var(f)

= sup
f :Ω→R,Ef=0

〈f, f〉π − 〈f, (I − PP∗)f〉π
〈f, f〉π

= sup
f :Ω→R,Ef=0

〈P∗f,P∗f〉π
〈f, f〉π = ‖P∗‖2 .

The second supremum is equal to the first because the numerator and
denominator in the first are invariant under addition of a constant to
f , so it may be assumed that Ef = 0.

Our concluding remark will require knowledge of the Lp → Lq op-
erator norm:
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Definition 1.18. Suppose T : RΩ → RΩ is an operator taking func-
tions f : Ω → R to other such functions. Then, given p, q ∈ [1,∞], let
‖T‖p→q be the optimal constant in the inequality

‖Tf‖q ≤ ‖T‖p→q ‖f‖p , for all f : Ω → R.

Remark 1.19. It has already been seen that ‖P∗‖2 = 1−λPP∗ . We now
consider a few other equivalent forms which have appeared in mixing
bounds equivalent to Proposition 1.12.

First, consider the operator norm. Let E denote the expectation
operator, that is, E is a square matrix with rows all equal to π. Then
P∗E = EP∗ = E2 = E and ‖f‖2 ≥ minc∈R ‖f − c‖2 = ‖f − Ef‖2, and
so ‖(P∗ −E)f‖2

‖f‖2
≤ ‖P∗(f − Ef)‖2

‖f − Ef‖2
≤ ‖P∗‖ .

In particular, ‖P∗ − E‖2→2 ≤ ‖P∗‖. Conversely, if Ef = 0 then (P∗ −
E)f = P∗f , and so ‖P∗‖ ≤ ‖P∗−E‖2→2. It follows that ‖P∗−E‖2→2 =
‖P∗‖.

It may seem more intuitive to work with P instead of P∗. In fact,
both cases are the same.

‖P∗ −E‖2→2 = sup
‖f‖2=1

‖(P∗ − E)f‖2

= sup
‖f‖2=1

sup
‖g‖2=1

|〈(P∗ −E)f, g〉π|

= sup
‖f‖2=1

sup
‖g‖2=1

|〈f, (P− E)g〉π|

= sup
‖g‖2=1

sup
‖f‖2=1

|〈(P− E)g, f〉π|

= ‖P− E‖2→2.

The second equality is just Lp duality, ‖f‖p = sup‖g‖q=1 |〈f, g〉π| when
1/p+ 1/q = 1 (which is just an extension of the dot product property
that ‖f‖2 = f · f

‖f‖2 = max‖g‖2=1 f · g).
Some authors have worked with complex valued functions. Note

that if f : Ω → C and T is a real valued square matrix then

‖Tf‖2
2 = ‖T (Ref)‖2

2 + ‖T (Imf)‖2
2

≤ ‖T‖2
2→2

(‖Ref‖2
2 + ‖Imf‖2

2

)

= ‖T‖2
2→2‖f‖2

2 ,
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and so ‖T‖2→2 would be the same, even if defined over complex valued
functions.

In summary,

‖P∗‖ = ‖P∗ − E‖2→2 = ‖P−E‖2→2 = ‖P‖
= sup

f :Ω→C
‖(P−E)f‖2

‖f‖2
= sup

f :Ω→C,Ef=0

‖Pf‖2

‖f‖2
.

1.4 Does Reversibility Matter?

Many mixing results were originally shown only in the context of a
reversible Markov chain. In this survey we are able to avoid this re-
quirement in most cases. However, there are still circumstances under
which reversible and non-reversible chains behave differently, and not
just as an artifact of the analysis. In this section we discuss these dif-
ferences, and also prove a few classical lemmas about reversible chains
which were used in the discrete time results given above, and which
explain why the reversibility assumption is helpful.

The difference between reversible and non-reversible results is most
apparent when upper and lower bounds on distances are given. Let

d(n) = max
x
‖Pn(x, ·)− π(·)‖TV

denote the worst variation distance after n steps. Then, combining
the above work, the lower bounds of Theorem 4.9, and recalling that
λmax = max{λ1, |λn−1|}, we have

if P is reversible :
1
2λ

n
max ≤ d(n) ≤ 1

2λ
n
max

√
1−π∗

π∗

if P is non-reversible :
1
2 maxi>0 |λi|n ≤ d(n) ≤ 1

2

(√
1− λPP∗

)n
√

1−π∗
π∗

In particular, in the reversible case the variation distance is deter-
mined, up to a multiplicative factor, by the size of the largest magnitude
eigenvalue. The rapid mixing property is then entirely characterized by
whether 1− λmax is polynomially large or not.

In contrast, Example 5.2 gives a convergent non-reversible chain
with complex eigenvalues such that maxλi 6=1 |λi| = 1/

√
2 and λPP∗ = 0.
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The non-reversible lower bound given above then converges to zero with
n, as it should, while the upper bound is constant and useless.

This is not to say that the situation is hopeless in the non-reversible
case. If the chain is lazy then it will be found that

1− 2ε
Φ̃

≤ τ(ε) ≤ 2
Φ̃2

log
1

ε
√
π∗
,

where the conductance is given by

Φ̃ = min
A⊂Ω

Q(A,Ac)
π(A)π(Ac)

.

It follows that for a lazy, non-reversible chain, the mixing time is deter-
mined, up to squaring and a multiplicative factor, by the conductance
Φ̃, a much weaker relation than was available in the reversible case,
and with no guarantees possible if the minimal holding probability α

is 0. Nevertheless, both upper and lower bounds are necessary. For in-
stance, Example 5.5 considers two lazy walks, both on a pair of cycles,
and both with identical conductance and spectral gap, Φ̃ = 1/100n
and λ = O(1/n2), and yet the reversible walk mixes in Θ(n2), while
the non-reversible walk mixes in Θ(n).

Another case in which reversibility will play a key role is comparison
of mixing times. This is a method by which the mixing time of a Markov
chain P can be bounded by instead studying a similar, but easier to
analyze chain P̂. For many Markov chains this is the only way known to
bound mixing time. In Theorem 4.17 we find that good comparison is
possible if P and P̂ are reversible, while if P is non-reversible then there
is a slight worsening, but if P̂ is non-reversible then the comparison is
much worse. Example 5.4 shows that even for walks as simple as those
on a cycle Z/nZ each of these three cases is necessary, and not just an
artifact of the method of proof.

The main reason why a reversible Markov chain is better behaved is
that it has a complete real valued spectral decomposition, and because
the spectral gap λ is exactly related to eigenvalues of the reversible
chain. For the sake of completeness, and because they are occasionally
used in this survey, we now show these classical properties.

The Perron-Frobenius theorem states that a reversible Markov chain
has a complete spectral decomposition into real valued eigenvalues and
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eigenvectors, and that these have magnitude at most 1.

Lemma 1.20. If P is reversible and irreducible on state space of size
|Ω| = n, then it has a complete spectrum of real eigenvalues with
magnitudes at most one, that is

1 = λ0 ≥ λ1 ≥ · · · ≥ λn−1 ≥ −1 .

A non-reversible chain may have complex valued eigenvalues, as in
Example 5.2.

Proof. Let(
√
π) = diag(

√
π(1),

√
π(2), . . . ,

√
π(n)) denote the di-

agonal matrix with entries drawn from
√
π(·). The matrix M =

(
√
π) P(

√
π)−1 is a symmetric matrix because

M(x, y) =

√
π(x)
π(y)

P(x, y) =
π(x)P(x, y)√
π(x)π(y)

=
π(y)P(y, x)√
π(x)π(y)

= M(y, x) .

It follows from the spectral theorem that since P is similar to a sym-
metric real matrix then it has a real valued eigenbasis.

In this eigenbasis, suppose v is a left eigenvector w a right eigenvec-
tor, with corresponding eigenvalues λv and λw. Then,

λv v w = (vP)w = v(Pw) = λwv w . (1.13)

In particular, if λv 6= λw then v and w are orthogonal. A special case
of this is the eigenvalue 1 with right eigenvector 1, as then if eigenvalue
λi 6= 1 has left eigenvector vi then

∑
x vi(x) = v1 = 0. Hence, for ε

sufficiently small σ = π + ε vi is a probability distribution. However,
the n step distribution is given by

σPn = (π + ε vi)Pn = π + ελn
i vi ,

and since
∑

x vi(x) = 0 then vi has a negative entry, and so if |λi| > 1
then σPn will have a negative entry for sufficiently large n, contradict-
ing the fact that σPn is a probability distribution.

The Courant-Fischer theorem shows the connection between eigen-
values and Dirichlet forms for a reversible Markov chain.
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Lemma 1.21. In a reversible Markov chain the second largest eigen-
value λ1, and smallest eigenvalue λn−1 satisfy

1− λ1 = inf
Var(f)6=0

E(f, f)
Var(f)

= λ ,

1 + λn−1 = inf
Var(f)6=0

F(f, f)
Var(f)

,

where

F(f, f) = 〈f, (I + P)f〉π =
1
2

∑

x,y∈Ω

(f(x) + f(y))2P(x, y)π(x) .

In Section 5.3 we will find that the relation 1− λ1 = λ becomes an
inequality 1− Reλi ≥ λ in the non-reversible case.

Proof. The numerator and denominator in the infinum are invariant
under adding a constant to f , so it may be assumed that Ef = 0, that
is, 〈f, 1〉π = 0.

Let {vi} be a set of right eigenvectors of P forming an orthonormal
eigenbasis for RΩ, with v0 = 1. Given f : Ω → R then f =

∑
ci vi with

ci = 〈f, vi〉π, and so

E(f, f) = 〈f, (I− P)f〉π =
∑

i,j∈Ω

cicj〈vi, (I− P)vj〉π

=
∑

i∈Ω

c2i (1− λi) ≥
∑

i∈Ω

c2i (1− λ1)

with an equality when f = v1. Also,

Var(f) = 〈f, f〉π − 〈f, 1〉π

=

〈∑

i∈Ω

civi,
∑

j∈Ω

cjvj

〉

π

−
〈∑

i∈Ω

civi, 1

〉

π

=
∑

i∈Ω

c2i

and so
E(f, f)
Var(f)

≥ 1− λ1
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with an equality when f = v1. The result then follows.
The same argument, but with I + P instead of I−P gives the result

for λn−1.



2

Advanced Functional Techniques

The relation between functional constants and mixing time bounds was
studied in Chapter 1. In this section it is shown that information on
functions of large variance, or on functions with small support, can be
exploited to show better mixing time bounds.

The argument is simple. Recall that d
dtVar(ht) = −2E(ht, ht). If

E(f, f) ≥ G(Var(f)) for some G : R+ → R+ and f : Ω → R+ with
Ef = 1, then it follows that d

dtVar(ht) = −2E(ht, ht) ≤ −2G(Var(ht)).
With a change of variables to I = Var(ht), this becomes dI

dt ≤ −2G(I),
and it follows that

τ2(ε) =
∫ τ2(ε)

0
1 dt ≤

∫ ε2

Var(h0)

dI

−2G(I)
. (2.1)

If one makes the obvious choice ofG(r) = λr, then this is just the bound
of the previous chapter. More generally, in this chapter we derive such
functions G in terms of the log-Sobolev constant, Nash inequalities,
spectral profile, or via comparison to another Markov chain.

With minimal modifications the argument applies in discrete-
time as well. First, replace d

dtVar(ht) = −2E(ht, ht) with Var(kn) −
Var(kn−1) = −EPP∗(kn, kn). Then, if EPP∗(f, f) ≥ GPP∗(Var(f)), and

27
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both I(n) = Var(kn) and GPP∗(r) are non-decreasing, the piecewise
linear extension of I(n) to t ∈ R+ will satisfy

dI

dt
≤ −GPP∗(I) .

At integer t, the derivative can be taken from either right or left. It
follows that

τ2(ε) =
∫ τ2(ε)

0
1 dt ≤

⌈∫ ε2

Var(h0)

dI

−GPP∗(I)

⌉
. (2.2)

In terms of G(r), by Equation (1.12),

EPP∗(f, f) ≥ 2αE(f, f) ≥ 2αG(Var(f)) ,

and so we may take GPP∗(r) = 2αG(r).

2.1 Log-Sobolev and Nash Inequalities

Some of the best bounds on L2 mixing times were shown by use of
the log-Sobolev constant (see Definition 1.9), a method developed in
the finite Markov chain setting by Diaconis and Saloff-Coste [25]. One
example of this is a walk on a class of matroids.

Example 2.1. A matroid M is given by a ground set E(M) with
|E(M)| = n and a collection of bases B(M) ⊆ 2E(M). The bases B(M)
must all have the same cardinality r, and ∀X,Y ∈ B(M), ∀e ∈ X, ∃f ∈
Y : X∪{f}\{e} ∈ B(M). One choice of a Markov chain on matroids is,
given state X ∈ B(M) half the time do nothing, and otherwise choose
e ∈ X, f ∈ E(M) and transition to state X − e + f if this is also a
basis.

Jerrum and Son [42] found that λ = 1/rn for this walk on the
class of matroids known as balanced matroids. There are at most
C(n, r) ≤ nr bases, and so Corollary 1.15 implies mixing in time
τ2(ε) = O (rn(r logn+ log(1/ε))). However, initially the density kn has
high variance, and so if the spectral gap gives an overly pessimistic
lower bound on the Dirichlet form E(f, f) when f has high variance
then Equation (2.2) suggests the mixing time may be faster. This is in
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fact the case, as the authors of [42] find by use of the method of log-
Sobolev inequalities, which we develop below, to sharpen this bound
to τ2(ε) = O (rn(log r + log logn+ log(1/ε))).

Equations (2.1) and (2.2) will bound mixing time in terms of the
log-Sobolev constant if we can show a relation between the Dirichlet
form E(f, f) and a function of the variance Var(f). The following lemma
establishes this connection.

Lemma 2.2. If f is non-negative then

Ent(f2) ≥ Ef2 log
Ef2

(Ef)2
,

and in particular, if Ef = 1 then

E(f, f) ≥ ρEnt(f2) ≥ ρ (1 + Var(f)) log(1 + Var(f)) .

Proof. By definition

Ent(f2) = Ef2 log
f2

Ef2
= 2Ef2 log

fEf
Ef2

+ Ef2 log
Ef2

(Ef)2

The first term drops out by applying the approximation logx ≥ 1−1/x.

Ef2 log
fEf
Ef2

≥ Ef2

(
1− Ef2

fEf

)
= Ef2 − Ef2Ef

Ef
= 0

Those familiar with cross-entropy might prefer to rewrite this proof
as follows. Noting that the cross-entropy H(f, g) = Ef log f

g ≥ 0 for
densities f , g, the proof is just the statement

Ent(f2) = 2Ef2H

(
f2

Ef2
,
f

Ef

)
+ Ef2 log

Ef2

(Ef)2
≥ Ef2 log

Ef2

(Ef)2
.

Diaconis and Saloff-Coste also showed that the Nash-inequality can
be used to study L2 mixing [26]. A Nash-inequality is a tool often used
to show that when the variance of the density is extremely high then the
walk converges even faster than predicted by the log-Sobolev constant.
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This often helps get rid of small terms such as a double logarithm.
For instance, in the case of balanced matroids considered in Example
2.1 one might hope for a Nash inequality to improve the log-Sobolev
mixing time bound to τ2(ε) = O (rn(log r + log(1/ε))). In Examples
2.7 and 2.13 we consider the well known exclusion process on the grid
Zd/LZd, and for this walk it might be possible for a Nash inequality
to supplement the log-Sobolev result and improve the bound by an
even larger O(d/ log d). Unfortunately, however, Nash inequalities are
notoriously difficult to establish, and in neither of these two cases has
the necessary Nash inequality been established.

We now show that the Dirichlet form can also be lower bounded in
terms of variance by using a Nash inequality.

Lemma 2.3. Given a Nash Inequality

‖f‖2+1/D
2 ≤ C

[
E(f, f) +

1
T
‖f‖2

2

]
‖f‖1/D

1

which holds for every function f : Ω → R and some constants
C, D, T ∈ R+, then whenever f ≥ 0 and Ef = 1 then

E(f, f) ≥ (1 + Var(f))

(
(1 + Var(f))1/D

C
− 1
T

)

Proof. The Nash inequality can be rewritten as

E(f, f) ≥ ‖f‖2
2

(
1
C

(‖f‖2

‖f‖1

)1/D

− 1
T

)

However, ‖f‖1 = E|f | = 1, and Var(f) = ‖f‖2
2 − 1, giving the result.

Mixing time bounds follow immediately from Equations 2.1 and 2.2.

Corollary 2.4. Given the spectral gap λ and the log-Sobolev constant
ρ and/or a Nash inequality with DC ≥ T and D ≥ 2, and given ε ≤ 2,
then the continuous time Markov chain satisfies

τ2(ε) ≤ 1
2ρ

log log
1
π∗

+
1
λ

(
1
4

+ log
1
ε

)
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τ2(ε) ≤ T +
1
λ

(
D

2
log

DC

T
+ log

1
ε

)

τ2(ε) ≤ T +
1
2ρ

log log
(
DC

T

)D

+
1
λ

(
1
4

+ log
1
ε

)

Upper bounds for the discrete time Markov chain are a factor of 2 larger
when Nash, log-Sobolev and spectral gap are computed in terms of the
chain PP∗, while when computed for P with holding probability α then
they are a factor α−1 larger.

Proof. Apply Equation (2.1) with the log-Sobolev bound of Lemma 2.2
when Var(ht) ≥ 4, and the spectral gap bound E(f, f) ≥ λVar(f) when
Var(ht) < 4, to obtain

τ2(ε) ≤
∫ 4

Var(h0)

dI

−2ρ(1 + I) log(1 + I)
+

∫ ε2

4

dI

−2λ I

=
1
−2ρ

(log log(1 + 4)− log log(1 + Var(h0))) +
1
−2λ

log
ε2

4

Simplify this by Var(h0) ≤ 1−π∗
π∗ , and apply ρ ≤ λ/2 to the log log(5)

term.
For the second mixing bound use the Nash bound of Lemma 2.3

when Var(ht) ≥ (DC/T )D−1, and the spectral bound when Var(ht) <
(DC/T )D − 1. The Nash portion of the integral is then

∫ (DC/T )D−1

Var(h0)

dr

−2 (1 + I)
(

(1+I)1/D

C − 1
T

)

= −DT
2

log
(

1− C/T

(1 + I)1/D

)∣∣∣∣
(DC/T )D−1

Var(h0)

≤ −DT
2

log(1− 1/D) ≤ DT

2(D − 1)
≤ T

The second inequality is because log(1− 1/x) ≥ − 1
x−1 .

For the final mixing bound, use the Nash inequality when Var(ht) ≥
(DC/T )D − 1, the log-Sobolev bound for (DC/T )D − 1 > Var(ht) ≥ 4
and the spectral bound when Var(ht) < 4.

For the discrete time case proceed similarly, but with equation (2.2)
instead of Equation (2.1).
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The continuous time log-Sobolev bound is comparable to a result
of Diaconis and Saloff-Coste [25], while the discrete time log-Sobolev
bound is comparable to a bound of Miclo [54].

Hypercontractivity ideas can be used to improve these results
slightly for a reversible, continuous time chain. For such chains, given
t0 ∈ R then

d

dt
‖ht‖1+e4ρ(t−t0) ≤ 0 . (2.3)

This follows from a tedious differentiation and a few approximations
(see around Equation (3.2) of [25]).

Now, let t0 = k+ 1
4ρ log [log(1 + Var(hk))− 1] for some fixed k ∈ R+.

Since t0 ≥ k then by Equation 2.3,

‖ht0‖2 ≤ ‖hk‖1+e−4ρt0 ≤ ‖hk‖
1− 2

log(1+Var(hk))

1 ‖hk‖
2

log(1+Var(hk))

2 = e .

The second inequality was the relation ‖f‖q∗ ≤ ‖f‖1−2/q
1 ‖f‖2/q

2 when
q ≥ 2 and 1/q+1/q∗ = 1; see Chapter 8, Lemma 41 of [1]. The equality
is because ‖hk‖1 = 1 and ‖hk‖2

2 = 1 + Var(hk). It follows that for any
k ≥ 0 that Var(ht0) = ‖ht0‖2

2 − 1 ≤ e2 − 1.
Combining this bound on Var(ht0) with our earlier Nash and spec-

tral work we obtain

τ2(ε) ≤
∫ (DC/T )D−1

Var(h0)

dr

−2 (1 + I)
(

(1+I)1/D

C − 1
T

)

+
1
4ρ

log
[
log(DC/T )D − 1

]
+

∫ ε2

e2−1

dI

−2λ I

< T +
1
4ρ

log log
(
DC

T

)D

+
1
λ

(
1 + log

1
ε

)
.

The factor of two difference between reversible and non-reversible
cases is common, as in Corollary 1.14 and Remark 1.11. This seems
to be a consequence of the Dirichlet property EP(f, f) = EP∗(f, f) =
EP+P∗

2
(f, f), from which it follows that ρ and λ are the same for the

non-reversible chain P and the reversible chain P+P∗
2 .
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2.2 Spectral profile

In the previous section it was found that log-Sobolev bounds on mixing
time can improve on spectral gap results, by replacing the log(1/π∗)
term with log log(1/π∗). However, the log-Sobolev constant is much
more difficult to bound than the spectral gap and, to date, bounds on
it are known for only a handful of problems. Moreover, sometimes even
log-Sobolev is not strong enough. In this section we develop the method
of Spectral Profile, the idea of which is to improve on the elementary
relation E(f, f) ≥ λVar(f), i.e. G(r) ≥ λr, and instead make a relation
depending on the size of the support of f . This improves on log-Sobolev
bounds, while generalizing both spectral gap and conductance methods
(defined in the next chapter).

Example 2.5. Consider a lazy simple random walk on the cycle
Z/mZ, with P(i, i + 1) = P(i, i − 1) = 1/4 and P(i, i) = 1/2. Then
λ, ρ = O(1/m2), by taking f = 1{0...m/2} in the definitions of λ and ρ.
Then, Corollary 1.15 and 2.4 show at best

τ2(1/2e) = O(m2 logm) and τ2(1/2e) = O(m2 log logm)

respectively. The correct bound is τ2(1/2e) = Θ(m2), as will be es-
tablished in Example 2.11. The spectral and log-Sobolev bounds were
incorrect because during it’s early phases the walk rapidly reaches new
vertices, but fewer and fewer new ones as it continues – order

√
n ver-

tices have been reached after n steps. Hence, a good mixing time bound
should distinguish between early in the walk, when the probability den-
sity is highly concentrated at a few vertices, and later when it is more
spread around the space.

Example 2.6. The Thorp shuffle is a model for card shuffling for
which mixing bounds have been very hard to come by. Morris [64]
recently used the method of Evolving Sets (see next chapter) to give
the first polynomial bound in d on the mixing time of this shuffle for a
2d-card deck. In Section 5.4.2 we discover that his method can be used
to lower bound E(f,f)

Var(f) in terms of the size of the support of f , leading
to an improved mixing result with Theorem 2.10.
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Example 2.7. Consider an N vertex graph G, with edge set E, and
constant R such that 1 ≤ R ≤ N/2. Place R particles on the vertices of
the graph, with no two particles on the same vertex. Then, a step of the
R-particle Bernoulli-Laplace walk consists of choosing a particle and
an unoccupied location, both uniformly at random, and then moving
the particle to the new location. As far back as 1987 Diaconis and
Shahshahani [16] showed that λ = N

R(N−R) . It is only in 1998 that Lee
and Yau [49] determined the log-Sobolev constant, by showing:

ρ ≥ log 2
2 log N2

R(N−R)

.

Perhaps a spectral gap type argument depending on the size of the
support of f would have avoided the need to compute the log-Sobolev
constant? More importantly, even the log-Sobolev constant gives too
pessimistic a lower bound on E(f, f) for functions of small support (see
Example 2.13), and so a more general method may make it possible to
prove sharper bounds.

We now proceed to more concrete details. Faber-Krahn inequalities
were developed by Grigor’yan, Coulhon and Pittet [18] (see also [35]
and [19]) to study the rate of decay of the heat kernel, and in the finite
Markov setting by Goel, Montenegro and Tetali [34]. As mentioned
earlier, the argument is based on improving on the elementary relation
E(f, f) ≥ λVar(f), and instead making a relation depending on the size
of the support of f .

Definition 2.8. For a non-empty subset S ⊂ Ω the first Dirichlet
eigenvalue on S is given by

λ1(S) = inf
f∈c+0 (S)

E(f, f)
Var(f)

where c+0 (S) = {f ≥ 0 : supp(f) ⊂ S} is the set of non-negative
functions supported on S. The spectral profile Λ : [π∗,∞) → R is given
by Λ(r) = infπ∗≤π(S)≤r λ1(S).

The spectral profile is a natural extension of spectral gap λ, and
we will now see that it can be used to improve on the basic bound
E(f, f) ≥ λVar(f) used earlier.
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Lemma 2.9. For every non-constant function f : Ω → R+,

E(f, f) ≥ 1
2

Λ
(

4(Ef)2

Var f

)
Var(f) .

Proof. Given a ∈ R use the notation a+ = max{a, 0} to denote the
positive part. For c constant, E(f, f) = E(f−c, f−c). Also, E(f−c, f−
c) ≥ E((f − c)+, (f − c)+) because ∀a, b ∈ R : (a− b)2 ≥ (a+− b+)2. It
follows that when 0 ≤ c < max f then

E(f, f) ≥ E((f − c)+, (f − c)+)

≥ Var((f − c)+) inf
u∈c+0 (f>c)

E(u, u)
Var(u)

≥ Var((f − c)+) Λ(π(f > c)) .

The inequalities ∀a, b ≥ 0 : (a− b)2+ ≥ a2− 2b a and (a− b)+ ≤ a show
that

Var((f − c)+) = E(f − c)2+ − (E(f − c)+)2 ≥ Ef2 − 2cEf − (Ef)2.

Let c = Var(f)/4Ef and apply Markov’s inequality π(f > c) < (Ef)/c,

E(f, f) ≥ (Var(f)− 2cEf) Λ(Ef/c) =
1
2

Var(f) Λ
(

4(Ef)2

Var f

)

A mixing time theorem then follows easily.

Theorem 2.10. Consider a Markov chain P, initial distribution σ and
holding probability α. In continuous time,

τ2(ε) ≤
∫ 1/2

4/Var(σ/π)

dr

rΛ(r)
+

1
λ

log
2
√

2
ε

.

In discrete time,

τ2(ε) ≤
⌈∫ 1/2

4/Var(σ/π)

2 dr
rΛPP∗(r)

+
2

λPP∗
log

2
√

2
ε

⌉

≤
⌈∫ 1/2

4/Var(σ/π)

dr

α rΛ(r)
+

1
αλ

log
2
√

2
ε

⌉
.

Moreover, Var(σ/π) ≤ 1
π∗ − 1 < 1

π∗ .
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Proof. In continuous time let h0(x) = σ(x)
π(x) , and apply Equation (2.1)

with the spectral profile bound of Lemma 2.9 to obtain

τ2(ε) ≤
∫ 8

Var(h0)

dI

−I Λ(4/I)
+

∫ ε2

8

dI

−2λ I
.

A change of variables to r = 4/I(t) gives the mixing time bound.
In discrete time use equation (2.2) instead of (2.1). Then simplify

with the relation ΛPP∗(r) ≥ 2αΛ(r), an immediate consequence of
Equation 1.12.

The theorem, with the trivial bound Λ(r) ≥ λ, produces bounds
about a factor of two worse than those of Corollaries 1.6, 1.14 and
1.15. However, there can be a significant improvement if Λ(r) À λ for
small values of r.

As an elementary example, let us give our first proof of both upper
and lower bounds on a mixing time.

Example 2.11. It was established at the beginning of this section that
spectral gap and the log-Sobolev constant cannot be used to establish
a sharp mixing time bound for a walk on the cycle Z/mZ. Instead we
use the spectral profile. The conductance profile is a geometric analog
of spectral profile, and by equation (3.1) it can be used to lower bound
spectral profile. Given r ∈ [0, 1] the conductance profile is minimized
at the set A = {0, 1, . . . , brmc − 1}, with Φ(A) = p+q

mπ(A) ≥ p+q
2mr . Then

Λ(r) ≥ Φ2(r)
2(1− α)

≥ p+ q

8m2r2
.

The discrete time mixing time is τ2(1/2e) = O
(

m2

(1−p−q)(p+q)

)
by The-

orem 2.10.
We now show a matching lower bound. Let xk denote the direction

of the kth step, so x ∈ {−1, 0,+1}. By the Central Limit Theorem
there is a 99.7% chance that the long range average of xk is within 3
standard deviations of the expected value. The standard deviation of

the average is σ =
√

p+q−(p−q)2

N , and so in particular

Prob

(
−3σ <

1
N

(
N∑

i=1

xi − E
N∑

i=1

xi

)
< 3σ

)
> 99.7% .
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Hence, with high probability, if N < m2

32∗42∗(p+q−(p−q)2)
then the walk is

still in the same half of the cycle as it’s expected location, and so for
constants C1, C2,

C1
m2

p+ q − (p− q)2
≤ τ(1/2e) ≤ 1

2
τ2(1/2e) ≤ C2

m2

p+ q − (p+ q)2
.

(2.4)
The order of the upper and lower bounds cannot be made to match

more closely, because if p = q = 1/2 then τ2(1/2e) = O(m2) when there
are an odd number of vertices, but the walk is periodic when there are
an even number of vertices.

Given that spectral profile is a fairly new tool, it has not been widely
studied yet. However, mixing time methodologies that have been devel-
oped separately can sometimes be used to lower bound spectral profile,
and still obtain the same mixing results. Hence this method subsumes
many other results. For instance, in [34] the authors show that the
log-Sobolev constant and a Nash inequality induce the following lower
bounds:

Λ(r) ≥ ρ
log(1/r)

1− r
and Λ(r) ≥ 1

C r1/2D
− 1
T
.

By applying the Nash bound on Λ(r) for r ≤ (T/2DC)2D and the
log-Sobolev bound when (T/2DC)2D ≤ r ≤ 1/2, then integration in
Theorem 2.10 establishes the bound

τ2(ε) ≤ 2T +
1
ρ

log log
(

2DC
T

)2D

+
1
λ

log
2
√

2
ε

(2.5)

This is only a factor two weaker than that found with our more direct
approach earlier.

Another example of the utility of spectral profile, briefly discussed
at the top of this section, are bounds on the mixing time of the Thorp
shuffle. The proof of Theorem 5.13 proceeds by first upper bounding
Var(kN ) for someN , then lower bounding Λ(r), which when substituted
into Theorem 2.10 with σ(x) = π(x)kN (x) produces a mixing time
bound.
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2.3 Comparison methods

It sometimes happens that a Markov chain is difficult to study, but
a related chain is more manageable. In this situation the comparison
method has been widely used to bound spectral gap, log-Sobolev con-
stant and Nash inequalities (see [70, 24, 25, 26]). The argument applies
to the quantities considered in this chapter as well. In order to motivate
the subject, we first consider a few examples.

Example 2.12. Goel [33] solves a card-shuffling problem by compari-
son methods. He considers a slow card shuffle where either the top card
in the deck is put in one of the bottom k positions, or one of the bot-
tom k cards is put at the top of the deck. Mixing time upper and lower
bounds are shown by comparison to the relevant quantities for the well
studied random transposition shuffle, in which a pair of cards is chosen
uniformly and the positions of the two cards are then swapped.

The following example illustrates how comparison of spectral profile
might make it possible to simplify some difficult results.

Example 2.13. Recall the Bernoulli-Laplace random walk of Exam-
ple 2.7. The R-particle Exclusion process is a similar random walk
on an arbitrary graph; here a step consists of choosing a particle with
probability proportional to the degree of the vertex that the particle
is currently occupying, choosing a neighboring vertex uniformly, and
then moving the particle if the neighboring position is vacant.

The Bernoulli-Laplace walk is then, within a factor of N−R
N , just the

R-particle exclusion process on the complete graph KN . Diaconis and
Saloff-Coste [24] use a comparison method to lower bound the spectral
gap and log-Sobolev constant of the Exclusion process in terms of those
of the much simpler Bernoulli-Laplace walk, and thus show bounds on
mixing of the Exclusion process.

Morris [63], by a clever, but fairly involved argument, shows that the
exclusion process on G = Zd/LZd, the d-dimensional grid of side length
L, mixes faster than predicted by log-Sobolev. An alternate approach
would be to consider the Bernoulli-Laplace model, apply the relation
Λ(r) ≥ ρ log(1/r), and then use an alternate method to bound Λ(r)
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when r is extremely small (such as r < 2−d). Comparing the Exclusion
process to this may then match Morris’ bound.

Before deriving comparison results for the quantities in this chapter,
a preliminary result is needed.

Theorem 2.14. Consider two Markov chains P and P̂ on the same
state space Ω, and for every x 6= y ∈ Ω with P̂(x, y) > 0 define a
directed path γxy from x to y along edges in P. Let Γ denote the set of
all such paths. Then

EP(f, f) ≥ 1
A
EP̂(f, f) ,

Varπ(f) ≤M Varπ̂(f) , Entπ(f2) ≤M Entπ̂(f2) ,

where M = maxx
π(x)
π̂(x) and

A = A(Γ) = max
a 6=b:P(a,b)6=0

1
π(a)P(a, b)

∑

x 6=y:(a,b)∈γxy

π̂(x)P̂(x, y)|γxy| .

Proof. Without loss, assume that each path γxy does not cross the same
edge more than once.

First, consider the Dirichlet forms:

EP̂(f, f) =
1
2

∑

x6=y

(f(x)− f(y))2π̂(x)P̂(x, y)

=
1
2

∑

x6=y

( ∑

a 6=b:(a,b)∈γxy

(f(a)− f(b))
)2
π̂(x)P̂(x, y)

≤ 1
2

∑

x6=y

∑

a6=b:(a,b)∈γxy

(f(a)− f(b))2|γxy|π̂(x)P̂(x, y)

=
1
2

∑

a 6=b

(f(a)− f(b))2π(a)P(a, b) ×

1
π(a)P(a, b)

∑

x6=y:(a,b)∈γxy

π̂(x)P̂(x, y)|γxy|

≤ EP(f, f)A.
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For variance we have

Varπ(f) = inf
c∈R
Eπ(f(x)− c)2 ≤ inf

c∈R
M Eπ̂(f(x)− c)2 = M Varπ̂(f).

For entropy, observe that

Entπ(f2) =
∑

x∈Ω

π(x)
(
f2(x) log

f2(x)
Eπf2

− f2(x) + Eπf
2

)

= inf
c>0

∑

x∈Ω

π(x)
(
f2(x) log

f2(x)
c

− f2(x) + c

)

≤ inf
c>0

M
∑

x∈Ω

π̂(x)
(
f2(x) log

f2(x)
c

− f2(x) + c

)

= M Entπ̂(f2) .

The second equality follows from differentiating with respect to c to see
that the minimum occurs at c = Eπf

2, while the inequality required the
fact that a log a

b−a+b ≥ a (1− b
a)−a+b = 0 and so f2 log f2

c −f2+c ≥ 0.

An easy consequence of this is that spectral gap, log-Sobolev and
spectral profile bounds can be compared.

Corollary 2.15.

λP ≥ 1
M A

λP̂ , ρP ≥ 1
M A

ρP̂ , ΛP(r) ≥ 1
M A

ΛP̂(r).

The log-Sobolev and spectral profile mixing time bounds of P are thus
at worst a factor MA times larger than those of P̂.

If the distribution π = π̂ then a Nash inequality for P̂, along with the
relation EP(f, f) ≥ 1

AEP̂(f, f), immediately yields a Nash inequality for
P. It is not immediately clear how to compare Nash inequality bounds
if π 6= π̂. However, one can compare the spectral profile bounds used to
show Equation (2.5), and so the mixing time of P is at most M A times
the bound Equation (2.5) gives for P̂. Alternatively, one can compare
EP(f, f) to EP̂(f, f) and Varπ(f) to Varπ̂(f) in the original proofs of
the mixing times.
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In the case of a reversible chain Diaconis and Saloff-Coste [24] ob-
serve that it is also possible to compare λn−1 if the paths are of odd
length. First, a preliminary result.

Theorem 2.16. Consider two Markov chains P and P̂ on the same
state space Ω, and for every x, y ∈ Ω with P̂(x, y) > 0 (including
possibly y = x) define a directed path γxy of odd length |γxy| from x

to y along edges in P. Let Γ∗ denote the set of all such paths. Then

FP(f, f) ≥ 1
A∗

FP̂(f, f) ,

where M = maxx
π(x)
π̂(x) and

A∗ = A∗(Γ∗)

= max
a,b:P(a,b)6=0

1
π(a)P(a, b)

∑

x,y:(a,b)∈γxy

π̂(x)P̂(x, y)|γxy| rxy(a, b) ,

where rxy(a, b) is the number of times the edge (a, b) appears in path
γxy.

Proof. The proof is nearly identical to that for comparison of E(f, f),
except that due to the odd path length criterion a path may cross an
edge twice. Also, if the path γxy is given by x = x0, x1, x2 . . . , xm = y

for m odd then f(x) + f(y) is rewritten as

f(x) + f(y) = (f(x) + f(x1))− (f(x1) + f(x2)) + · · ·
−(f(xm−2) + f(xm−1)) + (f(xm−1) + f(y)) .

In particular, if P and P̂ are reversible then

1− λmax(P) ≥ 1
MA∗

(1− λmax(P̂)) ,

where we recall that λmax(K) = max{λ1, |λn−1|} denotes the size of the
second largest magnitude eigenvalue of Markov kernel K.

The most widely used example of these comparison results is the
“canonical path theorem” (see [75, 27] for numerous examples).
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Corollary 2.17. Given a Markov chain P on state space Ω, and di-
rected paths γxy between every pair of vertices x 6= y ∈ Ω, then

λ ≥
(

max
a6=b:P(a,b) 6=0

1
π(a)P(a, b)

∑

x 6=y:(a,b)∈γxy

π(x)π(y)|γxy|
)−1

.

Proof. Let P̂(x, y) = π(y), π̂ = π and M = 1 in Theorem 2.14. Given
f : Ω → R then

EP̂(f, f) =
1
2

∑

x,y∈Ω

(f(x)− f(y))2π(x)P̂(x, y)

=
1
2

∑

x,y∈Ω

(f(x)− f(y))2π(x)π(y) = Varπ(f) .

It follows that EP(f, f) ≥ 1
AEP̂(f, f) ≥ 1

AVarπ(f), and the result follows
by definition of λ and A.

There is a related bound on the smallest eigenvalue of a reversible
chain. This is useful in Corollary 1.15 when studying a random walk
with no holding probability, such as the card shufflings considered by
Goel (Lemma 4.1 of [33]).

Corollary 2.18. Consider a reversible Markov chain P on state space
Ω, and a set of cycles γx of odd length from each vertex x ∈ Ω to itself.
Then the smallest eigenvalue λn−1 of P satisfies the relation

1 + λn−1 ≥ 2
(

max
a,b:P(a,b)6=0

1
π(a)P(a, b)

∑

x: (a,b)∈γx

π(x)|γxy|rx(a, b)
)−1

,

where rx(a, b) is the number of times edge (a, b) appears in path γx.

Proof. Let P̂(x, y) = δx=y, π̂ = π and M = 1 in Theorem 2.16. Then
FP̂(f, f) = 1

2

∑
x∈Ω(2f(x))2π(x) = 2Eπf

2. It follows from Lemma 1.21
that for the walk P,

1 + λn−1 = inf
Varπ(f)6=0

F(f, f)
Varπ(f)

≥ 1
A∗

inf
Varπ(f)6=0

2Eπ(f2)
Eπ(f2)− (Eπf)2

≥ 2
A∗
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Evolving Set Methods

In many mixing time results the authors first estimate set expansion
and then relate it to mixing time bounds. An early breakthrough in
the study of mixing times was the conductance bound

λ ≥ Φ2/2 where Φ = min
A⊂Ω

Q(A,Ac)
min{π(A), π(Ac)}

(see [39, 48]). Essentially the same proof can be used (see [34]) to show
a conductance profile bound, that

Λ(r) ≥ Φ2(r)/2 where Φ(r) = min
π(A)≤r

Q(A,Ac)
min{π(A), π(Ac)} . (3.1)

Given holding probability α, this can be boosted to

Λ(r) = (1− α)ΛP−αI
1−α

(r) ≥ 1− α

2
Φ2

P−αI
1−α

(r)

=
1− α

2

(
Φ(r)
1− α

)2

=
Φ2(r)

2(1− α)
.

In the common setting of a reversible, lazy (i.e. α ≥ 1/2) chain
Corollary 1.15 then implies the bound

τ2(ε) ≤
⌈

1
Φ2

log
1

ε
√
π∗

⌉
. (3.2)

43
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More generally, by Corollary 1.14 and Theorem 2.10 discrete time
mixing satisfies

τ2(ε) ≤
⌈

2
α

1−α Φ2
log

1
ε
√
π∗

⌉
,

τ2(ε) ≤
⌈∫ 4/ε2

4π∗

2 dr
α

1−α rΦ
2(r)

⌉
.

(3.3)

In this chapter we develop a more direct method of proof. This can
give stronger set bounds, bounds for distances other than L2-distance,
and also leads to an extension of conductance which applies even with
no holding probability. In particular, it is one of the few methods for
studying relative entropy mixing τD(ε) of a discrete time chain. Work
will be done in discrete time, but carries over easily to continuous time,
as discussed at the end of the chapter. The results and their proofs are
based on the work of Morris and Peres [65] and Montenegro [61]. We
also briefly consider Blocking Conductance, an alternate method which
shows better mixing results when set expansion is poor on a small set,
but high for larger sets.

3.1 Bounding Distances by Evolving Sets

In order to relate a property of sets (conductance) to a property of
the original walk (mixing time) we construct a walk on sets that is a
dual to the original Markov chain. Given a Markov chain on Ω with
transition matrix P, a dual process consists of a walk PD on some state
space V and a link, or transition matrix, Λ from V to Ω such that

PΛ = ΛPD .

In particular, PnΛ = ΛPn
D and so the evolution of Pn and Pn

D will be
closely related. This relation is given visually by Figure 3.1.

Diaconis and Fill [22] studied the use of dual Markov chains in
bounding separation distance. Independently, Morris and Peres [65]
proposed the same walk on sets and used it to bound L2 distance.
Montenegro [61] sharpened this technique and extended it to other
distances.
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PD PD PDWalk on
V

Walk on
Ω P P P

Λ Λ Λ Λ Λ

Fig. 3.1 The dual walk PD projects onto the original chain P.

A natural candidate to link a walk on sets to a walk on states is
the projection Λ(S, y) = π(y)

π(S) 1S(y). Diaconis and Fill [22] have shown

that for certain classes of Markov chains that the walk K̂ below is the
unique dual process with link Λ, so this is the walk on sets that should
be considered. We use notation of Morris and Peres [65].

Definition 3.1. Given set A ⊂ Ω a step of the evolving set process is
given by choosing u ∈ [0, 1] uniformly at random, and transitioning to
the set

Au = {y ∈ Ω : Q(A, y) ≥ uπ(y)} = {y ∈ Ω : P∗(y,A) ≥ u}
The walk is denoted by S0, S1, S2, . . ., Sn, with transition kernel
Kn(A,S) = Prob(Sn = S|S0 = A).

The Doob transform of this process is the Markov chain on sets
given by K̂(S, S′) = π(S′)

π(S) K(S, S′), with n-step transition probabilities

K̂n(S, S′) = π(S′)
π(S) Kn(S, S′).

Heuristically, a step of the evolving set process consists of choosing
a uniform value of u, and then Au is the set of vertices y that get at
least a u-fraction of their size π(y) from the set A.

The Doob transform produces another Markov chain because of a
Martingale property.

Lemma 3.2. If A ⊂ Ω then
∑

A′⊂Ω

π(A′)K(A,A′) =
∫ 1

0
π(Au) du = π(A)
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Proof.
∫ 1

0
π(Au)du =

∑

y∈Ω

π(y)Prob(y ∈ Au) =
∑

y∈Ω

π(y)
Q(A, y)
π(y)

= π(A)

The walk K̂ is a dual process of P.

Lemma 3.3. If S ⊂ Ω, y ∈ Ω and Λ(S, y) = π(y)
π(S)1S(y) is the projec-

tion linkage, then
PΛ(S, y) = ΛK̂(S, y) .

Proof.

PΛ(S, y) =
∑

z∈S

π(z)
π(S)

P(z, y) =
Q(S, y)
π(S)

ΛK̂(S, y) =
∑

S′3y

K̂(S, S′)
π(y)
π(S′)

=
π(y)
π(S)

∑

S′3y

K(S, S′) =
Q(S, y)
π(S)

The final equality is because
∑

S′3y K(S, S′) = Prob(y ∈ S′) =
Q(S, y)/π(y).

With duality it becomes easy to write the n step transitions in terms
of the walk K̂.

Lemma 3.4. Let Ên denote expectation under K̂n. If x ∈ Ω and S0 =
{x} then

Pn(x, y) = ÊnπSn(y) ,

where πS(y) = 1S(y)π(y)
π(S) denotes the probability distribution induced

on set S by π.

Proof.

Pn(x, y) = (PnΛ)({x}, y) = (ΛK̂n)({x}, y) = ÊnπSn(y)

The final equality is because Λ(S, y) = πS(y).
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Recall from Equation (1.1) that if a distance dist(µ, π) is convex in µ
then the worst initial distribution is a point mass. Given the preceding
lemma it is easy to show a distance bound for all such convex distances.

Theorem 3.5. Consider a finite Markov chain with stationary distri-
bution π. Any distance dist(µ, π) which is convex in µ satisfies

dist(Pn(x, ·), π) ≤ Êndist(πSn , π)

whenever x ∈ Ω and S0 = {x}.

Proof. By Lemma 3.4 and convexity,

dist(Pn(x, ·), π) = dist(ÊnπSn , π) ≤ Êndist(πSn , π) .

In particular, if dist(µ, π) = Lπ

(µ
π

)
for a convex functional Lπ :

(R+)Ω → R then the distance is convex and the conditions of the the-
orem are satisfied. The total variation distance satisfies this condition
with Lπ(f) = 1

2‖f − 1‖1,π, relative entropy with Lπ(f) = Eπf log f ,
and L2 distance with Lπ(f) = ‖f − 1‖2,π, and so the following bounds
are immediate:

Theorem 3.6. If x ∈ Ω and S0 = {x} then in discrete time

‖Pn(x, ·)− π‖TV ≤ Ên(1− π(Sn)),

D(Pn(x, ·)‖π) ≤ Ên log
1

π(Sn)
,

‖Pn(x, ·)− π‖2 ≤ Ên

√
1− π(Sn)
π(Sn)

.

3.2 Mixing Times

Mixing time bounds can be shown via an argument similar to that
used for spectral profile bounds. One result that follows from this is
what appears to be the only general method of bounding discrete-time
convergence in relative entropy (recall there was no discrete-time analog
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to ρ0); by Corollary 3.9 and Theorem 3.6 this distance decreases at a
rate of Cz log(1/z) each step, as is the case with e−ρ0 in continuous time.
Also, when examining the Thorp shuffle in Section 5.4.3, the L2 mixing
time bound of Equation (3.5) will be used to give an alternate approach
to the spectral profile bounds.

We restrict attention to distances satisfying

dist(Pn(x, ·), π) ≤ Ênf(π(Sn))

for a decreasing function f : [0, 1] → R+ (such as those in Theorem
3.6), and define τ(ε) = min{n : Ênf(π(Sn)) ≤ ε} to be an upper bound
on the mixing time of our distance.

The analog of spectral profile ΛPP∗(r) will be the f -congestion:

Definition 3.7. Given a function f : [0, 1] → R+ the f-congestion
profile is

Cf (r) = max
π(A)≤r

Cf (A) where Cf (A) =
∫ 1

0

f(π(Au))
f(π(A))

du .

The f-congestion is Cf = maxA⊂Ω Cf (A).

The analog of Lemma 1.13 will be the following:

Lemma 3.8.

Ên+1f(π(Sn+1))− Ênf(π(Sn)) = −Ênf(π(Sn)) (1− Czf(z)(Sn))

≤ −(1− Czf(z)) Ênf(π(Sn))

Proof. The inequality is because 1−Czf(z) ≤ 1−Czf(z)(S) for all S ⊂ Ω.
For the equality,

Ên+1f(π(Sn+1)) = Ên

∑

S

K̂(Sn, S)f(π(S))

= Ênf(π(Sn))
∑

S K(Sn, S)π(S)f(π(S))
π(Sn)f(π(Sn))

= Ênf(π(Sn))Czf(z)(Sn)
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The analog of Corollary 1.14 is the following:

Corollary 3.9. In discrete time

dist(Pn(x, ·), π) ≤ Cn
zf(z) f(π(x))

and τ(ε) ≤
⌈

1
1− Czf(z)

log
f(π∗)
ε

⌉
.

Proof. By Lemma 3.8, Ên+1f(π(Sn+1)) ≤ Czf(z) Ênf(π(Sn)), and by
induction Ênf(π(Sn)) ≤ Cn

zf(z) f(π(S0)). Solving for when this drops
to ε and using the approximation log Czf(z) ≤ −(1 − Czf(z)), gives the
corollary.

Note that u-almost everywhere (Au)c = (Ac)1−u, and so if zf(z) =
zf(1−z) then a simple calculation shows that Czf(z)(A) = Czf(z)(Ac). In
particular, when zf(z) = zf(1−z) then we may let Czf(z) = Czf(z)(1/2)
in the corollary, and more generally when r ≥ 1/2 then we may take
Czf(z)(r) = Czf(z).

Theorem 2.10 will have two analogs: a bound under a weak convex-
ity condition, with about a factor of two lost in the general case.

Theorem 3.10. In discrete time, if f is differentiable then

τ(ε) ≤
⌈∫ f−1(ε)

π∗

−f ′(r) dr
f(r)(1− Czf(z)(r))

⌉

if r
(
1− Czf(z)(f−1(r))

)
is convex, while in general

τ(ε) ≤
⌈∫ f−1(ε/2)

f−1(f(π∗)/2)

−2f ′(r) dr
f(r)(1− Czf(z)(r))

⌉

Proof. First consider the convex case.
By Lemma 3.8 and Jensen’s inequality for the convex function

x
(
1− Czf(z)(f−1(x))

)
,

Ên+1f(π(Sn+1))− Ênf(π(Sn))

= −Ênf(π(Sn)) (1− Czf(z)(Sn))

≤ −Ênf(π(Sn))
[
1− Czf(z)

(
f−1 ◦ f(π(Sn))

)]

≤ −
[
Ênf(π(Sn))

] [
1− Czf(z)

(
f−1(Ênf(π(Sn)))

)]
. (3.4)
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Since I(n) = Ênf(π(Sn)) and 1−Czf(z)(f−1(x)) are non-increasing, the
piecewise linear extension of I(n) to t ∈ R+ satisfies

dI

dt
≤ −I(t) [

1− Czf(z)(f
−1(I(t)))

]

At integer t the derivative can be taken from either right or left. Make
the change of variables r = f−1(I(t)), and integrate,

τ(ε) =
∫ τ2(ε)

0
1 dt

≤ −
∫ I(τ2(ε))

I(0)

dI

I
(
1− Czf(z)(f−1(I(t)))

)

= −
∫ r(τ2(ε))

r(0)

f ′(r)dr
f(r)

(
1− Czf(z)(r)

) ,

as in Equation 2.2 and the proof of Theorem 2.10.
For the general case, use Lemma 3.11 instead of convexity at (3.4).

Lemma 3.11. If Z ≥ 0 is a nonnegative random variable and g is a
nonnegative increasing function, then

E (Z g(Z)) ≥ EZ

2
g(EZ/2) .

Proof. (from [65]) Let A be the event {Z ≥ EZ/2}. Then E(Z 1Ac) ≤
EZ/2, so E(Z1A) ≥ EZ/2. Therefore,

E (Z g(2Z)) ≥ E (Z1A g(EZ)) ≥ EZ

2
g(EZ) .

Let U = 2Z to get the result.

It is fairly easy to translate these to mixing time bounds. For in-

stance, by Theorem 3.6 it is appropriate to let f(z) =
√

1−z
z for L2
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bounds. Then the bounds from Corollary 3.9 and Theorem 3.10 imply:

τ2(ε) ≤





⌈
1

1− C√
z(1−z)

log
1

ε
√
π∗

⌉

⌈∫ 1
1+ε2

π∗

dx

2x(1− x)(1− C√
z(1−z)

(x))

⌉

⌈∫ 1
1+ε2/4

4π∗
1+3π∗

dx

x(1− x)(1− C√
z(1−z)

(x))

⌉

, (3.5)

with the first integral requiring x
(
1− C√

z(1−z)

(
1

1+x2

))
to be convex.

By making the change of variables x = r
1+r and applying a few pes-

simistic approximations one obtains a result more strongly resembling
spectral profile bounds:

τ2(ε) ≤





⌈
1

1− C√
z(1−z)

log
1

ε
√
π∗

⌉

⌈∫ 1/ε2

π∗

dr

2r(1− C√
z(1−z)

(r))

⌉

⌈∫ 4/ε2

4π∗

dr

r(1− C√
z(1−z)

(r))

⌉

For total variation distance related results are in terms of Cz(1−z)(r),
and Cz log(1/z)(r) for relative entropy. The mixing time bounds are left
to the interested reader.

3.3 Conductance

The most common geometric tool for studying mixing time is the con-
ductance Φ, a measure of the chance of leaving a set after a single step.
The conductance profile can also be used to lower bound the various
f -congestion quantities Cf when the Markov chain is lazy. In Section
5.4.3 conductance profile, and in particular Lemma 3.13, is used to
bound C√

a(1−a)
(r) for the Thorp shuffle.
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The argument is fairly simple (see also [65]).

Theorem 3.12. Given a lazy Markov chain, and f : R+ → R+ con-
cave, then

Cf (A) ≤ f(π(A) + 2Q(A,Ac)) + f(π(A)− 2Q(A,Ac))
2f(π(A))

.

Proof. For a lazy chain, if u > 1/2 then Au ⊂ A, and so
∫ 1

1/2
π(Au) du =

∑

y∈A

(
Q(A, y)
π(y)

− 1
2

)
π(y)

= Q(A,A)− π(A)
2

=
π(A)

2
− Q(A,Ac) .

By Lemma 3.2
∫ 1
0 π(Au)du = π(A), from which it follows that

∫ 1/2

0
π(Au) du = π(A)−

∫ 1

1/2
π(Au)du =

π(A)
2

+ Q(A,Ac) . (3.6)

Jensen’s inequality shows that if f, g : R+ → R+ with f concave then∫ 1
0 f (g(x)) dx ≤ f

(∫ 1
0 g(x)dx

)
. In particular,

Cf (A) =

∫ 1/2
0 f(π(Au)) du

1/2 +
∫ 1
1/2 f(π(Au)) du

1/2

2f(π(A))

≤
f

(∫ 1/2
0 π(Au) du

1/2

)
+ f

(∫ 1
1/2 π(Au) du

1/2

)

2f(π(A))

For each choice of f a bit of simplification leads to bounds on Cf .
For instance, a lazy Markov chain will have

C√
z(1−z)

(A) ≤
√

1− Φ̃(A)2 and τ2(ε) ≤
⌈

2
Φ̃2

log
1

ε
√
π∗

⌉
,

where conductance

Φ̃(A) =
Q(A,Ac)
π(A)π(Ac)

, Φ̃(r) = min
π(A)≤r

Φ̃(A), Φ̃ = min
A⊂Ω

Φ̃(A) .
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Note that Φ̃(A) > Φ(A), and so this is an improvement on (3.3) for
lazy Markov chains. See Example 3.15 for an example of how to use
conductance.

Conductance is inappropriate for non-lazy chains because it cannot
distinguish a periodic chain from an aperiodic one. In Section 1.3 it
was found that for a discrete time chain the L2 mixing time is closely
related to λPP∗ , and via Cheeger’s inequality it is thus related to ΦPP∗ .
In fact, the same holds for the evolving set bound on L2 mixing.

Lemma 3.13.

1− C√
z(1−z)

(A) ≥ 1− 4

√
1− Φ2

PP∗(A) ≥ 1
4

Φ2
PP∗(A)

Proof. Given A,B ⊂ Ω, and u,w ∈ [0, 1] chosen uniformly at random,
then

QPP∗(A,B) =
∑

x

QP(A, x)P∗(x,B)

=
∑

x

π(x)Prob(x ∈ Au)Prob(x ∈ Bw)

= Eπ(Au ∩Bw) .

In particular,

Eπ(Au ∩Aw) = QPP∗(A,A) = π(A)− QPP∗(A,Ac) .

This suggests that we should rewrite C√
z(1−z)

(A) in terms of π(Au∩
Aw). Let X = π(Au ∩ Aw) = min{π(Au), π(Aw)} and Y = π(Au ∪
Aw) = max{π(Au), π(Aw)}. Then

E
√
π(Au)(1− π(Au))

=
√
E

√
π(Au)(1− π(Au))π(Aw)(1− π(Aw))

=
√
E

√
X(1−X)Y (1− Y )

≤ 4
√
EX(1−X)EY (1− Y )

≤ 4
√
EX(1− EX)EY (1− EY )

= 4
√
EX(1− EX) (2π(A)− EX)(1− 2π(A) + EX)
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To complete the lemma, substitute in the identity EX = π(A) −
QPP∗(A,Ac), then divide by

√
π(A)π(Ac) to obtain

C√
z(1−z)

(A) ≤ 4

√
(
1− Φ2

PP∗(A)
) (

1− Φ2
PP∗(A)

π(A)2

π(Ac)2

)

and then pessimistically assume that π(A) = 0.

This is comparable to the spectral profile result. For instance, it
follows that

τ2(ε) ≤
⌈∫ 4/ε2

4π∗

4 dr
rΦ2

PP∗(r)

⌉

which matches the spectral profile bound but can be improved by a
factor of two if xΦ2

PP∗

(
1

1+x2

)
is convex.

3.4 Modified Conductance

In the previous section we discussed use of conductance of PP∗ to study
mixing time of a non-lazy chain. We now consider an alternative ap-
proach which does not require use of the chain PP∗. Recall that con-
ductance cannot be used for non-lazy chains because, for example, in
a periodic chain the conductance may be high but the walk alternates
between two sets of equal sizes (the partitions) and never reaches more
than half the space at once, and hence never mixes. It seems more ap-
propriate, therefore, to consider the chance of stepping from a set A
into a strictly larger set, that is, the worst flow into a set of size π(Ac).
With this motivation, consider

Ψ(A) = min
B⊂Ω, v∈Ω

π(B)≤π(Ac)<π(B∪v)

Q(A,B) +
π(Ac)− π(B)

π(v)
Q(A, v) .

The conductance-like quantity to be considered in this section is the
following:

Definition 3.14. The modified conductance φ̃ and its profile φ̃(r) are
given by defining

φ̃(A) =
Ψ(A)

π(A)π(Ac)
, φ̃(r) = min

π(A)≤r
φ̃(A), φ̃ = min

A⊂Ω
φ̃(A) .
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Define φ(A) similarly but without π(Ac) in the denominator.

Observe that for a lazy chain Ψ(A) = Q(A,Ac), and so φ̃(A) =
Φ̃(A) ≥ Φ(A), showing that modified conductance bounds extend con-
ductance to the non-lazy case.

Example 3.15. Consider a random walk on a cycle of even length,
Z/mZ.

The lazy random walk with P(i, i) = 1/2 and P(i, i± 1) = 1/4 has
Φ̃ = 2/m, as demonstrated in Figure 3.2, and so we can conclude that

1− C√
z(1−z)

≥ 1−
√

1− 4/m2 ≥ 2/m2

and τ2(ε) ≤
⌈
m2

2
log

√
m

ε

⌉
.

Meanwhile, for the non-lazy random walk with P(i, i ± 1) = 1/2
Figure 3.2 shows the worst case of A and B, with Ψ(A) = Q(A,B) = 0,
and so φ̃ = 0.

The conductance of the lazy version of this chain was good, and we
correctly found that the chain converged, while the non-lazy version is
periodic and has zero modified conductance, so modified conductance
captured the key differences between these chains.
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Fig. 3.2 Circled region on left gives Φ̃. For φ̃, let A be white vertices and B circled vertices.

The main result of this section is the following:
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Theorem 3.16. Given a subset A ⊂ Ω then

φ̃(A) ≥ 1− C√
z(1−z)

(A) ≥ 1−
√

1− φ̃(A)2 ≥ φ̃(A)2/2

φ̃(A) ≥ 1− Cz log(1/z)(A) ≥ 2φ(A)2

log(1/π(A))

φ̃(A) ≥ 1− Cz(1−z)(A) ≥ 4φ̃(A)2π(A)(1− π(A))

In order to prove this it is necessary to extend (3.6) to a result for
writing Ψ(A) in terms of evolving sets.

Lemma 3.17. Given A ⊂ Ω and ℘A ∈ [0, 1] satisfying

inf{y : π(Ay) ≤ π(A)} ≤ ℘A ≤ sup{y : π(Ay) ≥ π(A)}
then

Ψ(A) =
∫ ℘A

0
(π(Au)− π(A)) du =

∫ 1

℘A

(π(A)− π(Au)) du .

For a lazy chain one may let ℘A = 1/2, and we get (3.6) again.

Proof. The second equality is from the Martingale property Lemma 3.2.
The final equality follows from the second equality and the definition
of ℘A.

To prove the first equality, observe that ∀x ∈ Ω : Q(A, x) =∫ 1
0 π(Au ∩ x) du and so if w ∈ [0, 1] then

∫ w

0
(π(Au)− π(Aw)) du = Q(A,Ω \Aw) .

In particular, if π(A℘A) = π(A), then B = Ω \A℘A in the definition of
Ψ(A), and the first equality follows.

More generally, if π(A℘A) > π(A) then B ⊃ Ω \A℘A and the points
x ∈ (B ∪ v) \ (Ω \A℘A) satisfy Q(A, x) = ℘Aπ(x). But then

Ψ(A) = Q(A,Ω \A℘A) + (π(Ac)− π(Ω \A℘A))℘A

=
∫ ℘A

0
(π(Au)− π(A)) du ,

which completes the general case.
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Theorem 3.16 can be shown via Jensen’s inequality and this lemma,
although the upper bounds require a careful setup. However, we will fol-
low an alternative approach in which the extreme cases are constructed
explicitly. The following analytic fact will be needed.

Lemma 3.18. Given two non-increasing functions g, ĝ : [0, 1] → [0, 1]
such that

∫ 1
0 g(u) du =

∫ 1
0 ĝ(u) du and ∀t ∈ [0, 1] :

∫ t
0 g(u) du ≥∫ t

0 ĝ(u) du, then
∫ 1

0
f ◦ g(u) du ≤

∫ 1

0
f ◦ ĝ(u) du,

for every concave function f : [0, 1] → R.

Proof. The concavity of f(x) implies that

∀x ≥ y, δ ≥ 0 : f(x) + f(y) ≥ f(x+ δ) + f(y − δ) . (3.7)

This follows because y = λ (y−δ)+(1−λ) (x+δ) with λ = 1− δ
x−y+2δ ∈

[0, 1] and so by concavity f(y) ≥ λ f(y− δ)+(1−λ) f(x+ δ). Likewise,
x = (1−λ) (y− δ) +λ (x+ δ) and f(x) ≥ (1−λ) f(y− δ) +λ f(x+ δ).
Adding these two inequalities gives (3.7).

The inequality (3.7) shows that if a bigger value (x) is increased
by some amount, while a smaller value (y) is decreased by the same
amount, then the sum f(x) + f(y) decreases. In our setting, the condi-
tion that ∀t ∈ [0, 1] :

∫ t
0 g(u) du ≥

∫ t
0 ĝ(u) du shows that changing from

ĝ to g increased the already large values of ĝ(u), while the equality∫ 1
0 g(u) du =

∫ 1
0 ĝ(u) du assures that this is canceled out by an equal

decrease in the already small values. The lemma then follows from (3.7).

Proof. [Proof of Theorem 3.16] Observe that π(Au) ∈ [0, 1] is non-
increasing and Lemma 3.17 shows Ψ(A) is the area below π(Au) and
above π(A), and also below π(A) and above π(Au). It is easily seen that,
subject to these conditions, for all t ∈ [0, 1] the integral

∫ t
0 π(Au) du is

upper (or lower) bounded by the case when π(Au) has the shapes given
in Figure 3.3. By Lemma 3.18 these are the extreme cases minimizing
(or maximizing) Cf (A) for every concave function f(x)!
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Fig. 3.3 Maximizing
R t
0 π(Au) du and minimizing

R t
0 π(Au) du given Ψ(A) and ℘AA.

First consider the upper bound. If we let M(u) denote the maxi-
mizing case in the figure, then ∀t ∈ [0, 1] :

∫ t
0 π(Au) du ≤ ∫ t

0 M(u) du
and

∫ 1
0 π(Au) du = π(A) =

∫ 1
0 M(u) du, where

M(u) =





1 if u ≤ Ψ(A)
1−π(A)

π(A) if u ∈
(

Ψ(A)
1−π(A) , 1− Ψ(A)

π(A)

]

0 if u > 1− Ψ(A)
π(A)

By Lemma 3.18 any choice of f(z) which is concave and non-
negative will therefore satisfy

Cf (A) ≥
∫ 1
0 f ◦M(u) du
f(π(A))

=
Ψ(A)

1− π(A)
f(1)

f(π(A))
+

(
1− Ψ(A)

π(A)π(Ac)

)
f(π(A))
f(π(A))

+
Ψ(A)
π(A)

f(0)
f(π(A))

≥ 1− φ̃(A)

This shows all of the upper bounds.
For the lower bound, this time the figure shows that

∫ t
0 π(Au) du ≥∫ t

0 m(u) du when

m(u) =

{
π(A) + Ψ(A)

℘A
if u < ℘A

π(A)− Ψ(A)
1−℘A

if u > ℘A
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By Lemma 3.18, if f(z) = z(1− z) then

Cz(1−z)(A) ≤
∫ 1
0 f ◦m(u) du
f(π(A))

= ℘A

π(A) + Ψ(A)
℘A

π(A)

1− π(A)− Ψ(A)
℘A

1− π(A)

+(1− ℘A)
π(A)− Ψ(A)

1−℘A

π(A)

1− π(A) + Ψ(A)
1−℘A

1− π(A)

= 1− φ̃(A)2 π(A)π(Ac)
℘A(1− ℘A)

≤ 1− 4 φ̃(A)2 π(A)π(Ac)

The other cases are similar, but with harder inequalities to eliminate
the variable ℘A. See [61] for details.

It follows that, for instance,

τ2(ε) ≤
⌈

2
φ̃2

log
1

ε
√
π∗

⌉
and τ2(ε) ≤

⌈∫ 4/ε2

4π∗

2 dr
rφ̃2(r)

⌉
. (3.8)

In a lazy Markov chain, then φ̃(r) = Φ̃(r) > Φ(r) and this is a strict
improvement on the spectral bound (3.3), with a further improvement
if xΦ̃2

(
1

1+x2

)
is convex.

In this section we used the modified conductance φ̃(A) as a di-
rect measure of congestion of P, rather than use congestion of PP∗ via
ΦPP∗(A). In fact, the two are related.

Lemma 3.19.
φ̃(A) ≥ 1

2
Φ̃PP∗(A)

Proof. Let B be the set of size π(Ac) such that Ψ(A) = Q(A,B). Ob-
serve that

QP∗(Bc, Ac) = Q(Ac, Bc) = π(Ac)− Q(Ac, B)

= π(Ac)− (π(B)− Q(A,B)) = Q(A,B)

All ergodic flow from A to Ac in PP∗ must involve a transition (via P)
from A to B or Bc, and then (via P∗) to Ac, and hence

QPP∗(A,Ac) ≤ QP(A,B) + QP∗(Bc, Ac) = 2Ψ(A)
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It follows that

1− C√
z(1−z)

(r) ≥ 1−
√

1− φ̃2(r)

≥ 1−
√

1− Φ̃2
PP∗(r)/4 ≥

1
8

Φ̃2
PP∗(r) (3.9)

and a corresponding mixing time bound follows immediately as well.
In particular, modified conductance will not be more than a factor two
weaker than working with conductance of PP∗, via Lemma 3.13, but
may potentially be much better.

3.5 Continuous Time

Not much need be changed for continuous time. It is easily verified that
if K̂t = e−t(I−K̂) then

Ht(x, y) = ÊtπSt(y)

where S0 = {x} and Êt is the expectation under the walk K̂t. Bounds
in terms of kx

n then translate directly into bounds in terms of hx
t . Once

Lemma 3.8 is replaced by

d

dt
Êtf(π(St)) = −Êtf(π(St))(1− Czf(z)(St))

then mixing time bounds also carry over to the continuous-time case,
although it is no longer necessary to approximate by a derivative in the
proofs nor necessary to take the ceiling of the bounds. One advantage
of working in continuous time is that the chain P mixes in exactly half
the time of the chain I+P

2 , and so conductance applies even if a chain
is non-lazy:

‖ht − 1‖2 ≤ e
−
„

1−C(I+P)/2√
z(1−z)

«
2t

√
1− π∗
π∗

≤ e−2t(1−
√

1−Φ̃2/4)

√
1− π∗
π∗

(3.10)

and

τ2(ε) ≤ 1
2

∫ 4/ε2

4π∗

2dr
r Φ̃2

(I+P)/2(r)
=

∫ 4/ε2

4π∗

4dr
r Φ̃2(r)

. (3.11)
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3.6 Blocking Conductance

We finish this chapter by discussing an alternative method for geo-
metric bounds on mixing times. Generally, evolving set methods give
excellent L2 mixing bounds. However, L2 mixing can be slower than
total variation if there is a bottleneck at a very small set. For instance,
take a complete graph Km, attach a vertex v to it by a single edge, and
consider the random walk which chooses a neighbor uniformly with
probability 1/2m each, otherwise does nothing. Then τ(1/e) = Θ(m)
but τ2(1/e) = Θ(m logm). More interesting examples include the lamp-
lighter walks [68] and a non-reversible walk of [23].

In each of these cases the walk stays in a small set of vertices for
a long time, and so even as variation distance falls the L2 distance
stays large. Evolving set arguments do not work well with these ex-
amples, because evolving set bounds involve the increasing function
Cf (r) = maxπ(A)≤r Cf (A), and hence a bottleneck at a very small set
A will effect all values of r ≥ π(A). One remedy to this is to work
with Blocking Conductance, an alternate approach to bounding total
variation distance on lazy reversible Markov chains developed by Kan-
nan, Lovász and Montenegro [46]. A specific case of their result is the
following:

Theorem 3.20. The total variation mixing time of a reversible, lazy
Markov chain satisfies

τ(ε) ≤ C

(∫ 1/2

π∗

dr

rψ+(r)
+

1
ψ+(1/2)

)
log(1/ε) ,

where C is a universal constant, ψ+(r) = min r
2
≤π(A)≤r ψ

+(A) and if
A ⊂ Ω then

ψ+(A) =
1
2

∫ 1

1/2

(
1− π(Au)

π(A)

)2

du

≥ sup
λ≤π(A)

min
S⊂A

π(S)<λ

λQ(A \ S,Ac)
π(A)2

≥ 1
2
Φ2(A) .
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The key difference from the evolving set bounds is that if ψ+(A)
is small then this only effects the integral with r ∈ [π(A), 2π(A)]. It is
known [60] that 1 − C√

z(1−z)
(A) ≥ 1

4ψ
+(A), and so the sole improve-

ment here over using evolving sets is in the treatment of bottlenecks.
The second characterization of ψ+(A) above can be interpreted as

follows. Let λ denote the maximal size of a “blocking set”, such that if
any set S smaller than this is blocked from transitioning then it does
not block too much of the ergodic flow Q(A,Ac). In particular, if S ⊂ A

then Q(A \ S,Ac) = Q(A,Ac)− Q(S,Ac) ≥ Q(A,Ac)− π(S)/2, and so
by setting λ = Q(A,Ac) then the first lower bound on ψ+(A) implies
the second.

For instance, in the example of a complete graph with a single vertex
v attached, let λ = π({v}) = 1

m+1 . The only set π(S) < λ is S = ∅, and

so ψ+({v}) ≥ Q({v},Km)
π({v}) = 1

2m . All sets A 6= {v} satisfy Φ(A) ≥ 1/8,
and so ψ+(A) ≥ 1

128 . Hence ψ+(r) = 1
m+1 if 1

m+1 ≤ r ≤ 2
m+1 , and

ψ+(r) ≥ 1
128 otherwise. The above integral then evaluates to

τ(ε) = O(m log(1/ε)) ,

which is correct. Moreover, Equation (3.5) gives the correct τ2(ε) =
O(m log(m/ε)) bound because 1−C√

z(1−z)
(A) ≥ 1

4ψ
+(A), as remarked

above.
A more interesting example is given by Fountoulakis and Reed [31].

They have studied mixing time for the largest component of the random
graph Gn,p. This is the graph given by taking n vertices, and connecting
each pair of vertices by an edge with probability p. They report that
the conductance is poor at very small sets, and increases with set size,
leading to the following result:

Theorem 3.21. The random graph Gn,p, with p = p(n) such that
1 + Θ(1) < np, satisfies

τ(1/e) = Θ

(
max

{(
lnn
np

)2

,
lnn
lnnp

})

with probability 1− o(1).
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Remark 3.22. The proofs of the Blocking Conductance and Evolving
set results are very different, and yet similar in some ways. In the former
case, after n-steps of the walk, the vertices are ordered from those
where the n-step average density ρn(y) = 1

n+1

∑n
i=0 ki(y) is largest,

down to those where ρn(x) is smallest, as v1, v2, . . . , vk. Then, for each
{v1, v2, . . . , vi} they consider how much the set will grow in another step
of the walk. Similarly, with evolving sets, ρn(y) = 1

n+1

∑n
i=0

Prob(y∈Si)
π(x) ,

and so the points with the highest average chance of being in an Si

are exactly those appearing at the beginning of the list v1, v2, . . . , vk.
Likewise, given set A, the set Au is a measure of how quickly the walk
expands in a single step.

Remark 3.23. In [46] they prove a very general theorem bounding
total variation mixing time, then write three corollaries of it, one of
which is Theorem 3.20 given above. Surprisingly, although the methods
of proof used to show Blocking conductance and Evolving set results
were entirely different, it turns out that these three corollaries are al-
most exactly the total variation, relative entropy, and L2 mixing time
bounds of Theorem 3.6 and Corollary 3.9, but with better treatment
of bottlenecks [61].





4

Lower Bounds on Mixing Times and their
Consequences

In previous chapters we have considered the problem of bounding vari-
ous mixing times from above. Once one has shown an upper bound on
mixing time, it is natural to hope for a matching lower bound. In this
chapter such lower bounds will be considered. Just as we found spectral
and geometric (conductance) methods for upper bounds, there are also
spectral and geometric arguments for lower bounding mixing times. A
log-Sobolev lower bound will also be considered. We finish the chap-
ter with discussion of a consequence of the lower bounds: a method of
comparing mixing times.

4.1 A geometric lower bound

We first consider the geometric argument for lower bounding mixing
times. While this can be used to show lower bounds for a rapidly mixing
Markov chain, it is more commonly used to show that a Markov chain
mixes slowly, so-called “torpid mixing.” For instance, Borgs, et. al.
[8] studied the Swendsen-Wang and the Potts model near their phase
transitions, and by constructing a set A where the conductance Φ(A) is
exponentially small they were able to establish that both Markov chains

65
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take exponentially long to converge. This is of practical significance
as both Markov chains have been used in statistical physics and were
assumed to be rapidly mixing, even in the case considered by the above
authors.

Now, the geometric argument. Recall that

d(n) = max
x
‖Pn(x, ·)− π(·)‖TV

denotes the worst variation distance after n steps. Also, let d(t) de-
note the corresponding worst case in continuous time. As before, the
conductance Φ̃ is given by

Φ̃ = max
A⊂Ω

Φ̃(A) where Φ̃(A) =
Q(A,Ac)
π(A)π(Ac)

and when A,B ⊂ Ω then Q(A,B) =
∑

x∈A,y∈B π(x)P(x, y).

Theorem 4.1. In discrete time and continuous time, respectively,

d(n) ≥ 1
2

(1− n Φ̃) and d(t) ≥ 1
2

(1− tΦ̃)

Proof. We follow an argument of Borgs [7]. First, consider the discrete-
time case.

Let Φ̃n(A) denote the conductance of set A for the n-step Markov
chain Pn. It suffices to show that for every set A ⊂ Ω that

d(n) ≥ 1
2
|1− Φ̃n(A)|

and
Φ̃k+`(A) ≤ Φ̃k(A) + Φ̃`(A) (4.1)

since the latter inequality implies that Φ̃n(A) ≤ nΦ̃(A).
For the first inequality, let πA(x) = π(x)

π(A)1A(x) be the distribution
induced on set A by π. Then

d(n) ≥ ‖π − πAPn‖TV = sup
S⊂Ω

|π(S)− (πAPn)(S)| (4.2)

≥ |π(Ac)− (πAPn)(Ac)| = π(Ac)
∣∣∣1− Φ̃n(A)

∣∣∣ .

The first equality is because ‖σ − π‖TV = maxS⊂Ω |σ(S)− π(S)|, with
equality when S = {x ∈ Ω : σ(x) ≥ π(x)} or S = {x ∈ Ω : σ(x) <
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π(x)}. Also, since Φ̃n(A) = Φ̃n(Ac) then without loss assume that
π(A) ≤ 1/2.

For the second inequality, choose X0 from distribution π, and let
Xn denote the location of the walk at time n. Then

Φ̃n(A) =
P((Xn ∈ Ac) ∩ (X0 ∈ A))

π(A)π(Ac)
,

and so

P((Xk+` ∈ Ac) ∩ (X0 ∈ A))

= P((Xk+` ∈ Ac) ∩ (X` ∈ A) ∩ (X0 ∈ A))

+P((Xk+` ∈ Ac) ∩ (X` ∈ Ac) ∩ (X0 ∈ A))

≤ P((Xk+` ∈ Ac) ∩ (X` ∈ A)) + P((X` ∈ Ac) ∩ (X0 ∈ A)) .

Dividing both sides by π(A)π(Ac) gives the result, as X` is drawn from
distribution π.

The only place the discrete time assumption was used was to show
that Φ̃n(A) ≤ nΦ̃(A). However, Φ̃s+dt(A)− Φ̃s(A) ≤ Φ̃dt(A) = Φ̃(A)dt
by Equation (4.1), showing d

dt Φ̃t(A) ≤ Φ̃(A). Integration implies that
Φ̃t(A) ≤ t Φ̃(A).

Example 4.2. Consider the barbell given by connecting two copies of
the complete graph Km by a single edge, transitioning to a neighbor
with probability P(x, y) = 1/2m if x and y are adjacent, and otherwise
staying at state x. The conductance is Φ̃ = 1/4m2, which gives lower
bound d(n) ≥ 1− n

4m2 . This correctly shows that τ(1/2e) = Ω(m2).

Remark 4.3. A lower bound in terms of modified conductance φ̃

would be even more useful than one in terms of conductance, as φ̃ ≤ Φ̃.
Such a bound in terms of n-step modified conductance φ̃n does in fact
hold, and since φ̃n(A) ≤ Φ̃n(A) ≤ nΦ̃(A) then this is a stronger bound.
For instance, when P is the simple random walk P(i, i ± 1) = 1/2 on
a cycle Z/mZ then φ̃n = 0 when m is even, while φ̃n > 0 when m is
odd, correctly distinguishing between the non-convergent and the con-
vergent cases. Unfortunately, it is not true that φ̃n(A) ≤ nφ̃(A) (for
instance, φ̃ = 0 but φ̃2 = 1/2 in the walk of Example 5.2), so this result
is of questionable utility.
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Remark 4.4. The same argument shows a bound in terms of d̄(n),
defined in the next section:

d̄(n) ≥ |1− Φ̃n| ≥ 1− nΦ̃ .

4.2 A spectral lower bound

Next we turn our attention to a spectral lower bound. Recall that
Φ̃ ≥ λ ≥ Φ2/2, and so a lower bound in terms of the spectral gap
λ can potentially offer a significant improvement over the geometric
bound of the previous section. However, in Example 5.5 we give a non-
reversible walk where the lower bound we might expect in terms of λ,
in particular d(n) ≥ 1

2(1− nλ), cannot hold. Instead, we show a lower
bound in terms of the eigenvalues of P; in the reversible case this gives
a bound in terms of λ, and hence offers the hoped for improvement.

Example 4.5. Consider the simple random walk on the cycle Z/mZ
with P(i, i + 1) = P(i, i − 1) = p and P(i, i) = 1 − 2p. In Example
2.11 the lower bound τ(1/2e) = Ω(m2/p) was given by use of the
Central Limit Theorem. However, when p = 1/2 this bound cannot
distinguish between the Θ(m2) mixing time when m is odd, and the
non-convergent case when m is even. Neither can the geometric bound
of Theorem 4.1 distinguish between these two cases (despite Remark
4.3, establishing a concrete lower bound on φ̃n when m À 1 is not
likely to be feasible). However, the eigenvalues of this walk are λk =
cos(2πk/m) for k = 0 . . . (m − 1), and so in particular when m is odd
then |λk| ≤ cos(π/m) ≈ 1 − π2

2m2 for all k, but when m is even then
|λm/2| = | − 1| = 1. Theorem 4.9 below states that d(n) ≥ 1

2 |λk|n,
establishing a lower bound of the correct order for this walk both when
m is odd and when it is even.

The proof of a spectral result will involve a new notion of closeness
to stationarity.

d̄(n) = max
x,y

‖Pn(x, ·)− Pn(y, ·)‖TV .

Also let d̄(t) denote the corresponding worst case in continuous time.
The quantity d̄(n) measures the slowest rate at which a pair of initial
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distributions will converge towards each other, whereas d(n) measures
the slowest rate at which an initial distribution will converge to π. The
following lemma shows that d̄(n) is closely related to the usual variation
distance d(n).

Lemma 4.6.
d(n) ≤ d̄(n) ≤ 2d(n).

Proof. The proof is basically two applications of the triangle inequality.
Given probability distributions µ1 and µ2 then

‖µ1P
n − µ2P

n‖TV =

∥∥∥∥∥∥
∑

x,y∈Ω

µ1(x)µ2(y)(Pn(x, ·)− Pn(y, ·))
∥∥∥∥∥∥

TV

≤
∑

x,y∈Ω

µ1(x)µ2(y)‖Pn(x, ·)− Pn(y, ·)‖TV ≤ d̄(n). (4.3)

The inequality d(n) ≤ d̄(n) follows when µ1 = 1{x} and µ2 = π.
Given x, y ∈ Ω then

‖Pn(x, ·)− Pn(y, ·)‖TV ≤ ‖Pn(x, ·)− π‖TV + ‖π − Pn(y, ·)‖TV ≤ 2d(n).

Given (real or complex valued) vector v, let ‖v‖TV = 1
2

∑
x∈Ω |v(x)|.

The distance d̄(n) can be written in a form akin to an operator norm.

Lemma 4.7. If |Ω| = N then

d̄(n) = sup
v∈RN , v·1=0

‖vPn‖TV

‖v‖TV
≥ 1√

2
sup

v∈CN , v·1=0

‖vPn‖TV

‖v‖TV
.

Proof. One direction of the real case is easy:

d̄(n) = sup
x,y

‖(δx − δy)Pn‖TV ≤ sup
v∈RN , v·1=0

‖vPn‖TV

‖v‖TV
.

For the converse, without loss assume ‖v‖TV = 1. Let v+ =
max{v, 0} and v− = max{−v, 0}. If v · 1 = 0 then

∑
x∈Ω v+(x) =
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∑
x∈Ω v−(x) = ‖v‖TV, and so v = v+− v− is a difference of probability

distributions. Equation (4.3) then shows that

‖vPn‖TV = ‖v+Pn − v−Pn‖TV ≤ d̄(n) .

When v ∈ CN with v · 1 = 0, then write v = (Re v) + i(Im v) with
Re v, Im v ∈ RN . Then

‖vPn‖TV ≤ ‖(Re v)Pn‖TV + ‖(Im v)Pn‖TV

≤ d̄(n) (‖Re v‖TV + ‖Im v‖TV)

≤
√

2d̄(n)‖v‖TV .

The first and last inequalities are due to the relation |a+bi| ≤ |a|+|b| ≤√
2|a + bi| when a, b ∈ R. The second inequality is from the real case,

since (Re v) · 1 = (Im v) · 1 = 0.

One consequence of this is the following lemma, which is tradition-
ally shown via a coupling argument.

Lemma 4.8. Given m,n ≥ 0 then

d(n+m) ≤ d(n)d̄(m) ,

d̄(n+m) ≤ d̄(n)d̄(m) ,

and in particular,

τ(ε) ≤ τ(1/2e)
⌈
log

1
2ε

⌉
.

Proof. The first bound follows easily from Lemma 4.7:

‖δxPn+m − π‖TV = ‖(δxPn − π)Pm‖TV

≤ ‖δxPn − π‖TV d̄(m) .

The second bound follows similarly:

‖δxPn+m − δyP
n+m‖TV = ‖(δxPn − δyP

n)Pm‖TV

≤ ‖δxPn − δyP
n‖TV d̄(m) .

By these relations and Lemma 4.6 we have

d(kτ(1/2e)) ≤ d(τ(1/2e))d̄(τ(1/2e))k−1 ≤ 2k−1d(τ(1/2e))k ≤ 1/2ek .
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With these lemmas it is fairly easy to show a lower bound on varia-
tion distance. See Seneta [74] for a similar lower bound in terms of the
real eigenvalues.

Theorem 4.9. Let λmax denote the second largest magnitude (com-
plex valued) eigenvalue of P, and λ′ be the non-trivial eigenvalue with
largest real part. In discrete and continuous time respectively

d(n) ≥ 1
2
|λmax|n while d(t) ≥ 1

2
e−(1−Reλ′) t ,

that is, the discrete and continuous time mixing times are lower
bounded respectively by

τ(ε) ≥ log(1/2ε)
log(1/|λmax|) ≥

|λmax|
1− |λmax| log(1/2ε) and τ(ε) ≥ log(1/2ε)

1− Reλ′
.

Proof. If vi ∈ CN is a left eigenvector corresponding to eigenvalue
λi 6= 1 of P then vi1 = 0, as shown in Equation (1.13). From Lemma
4.7 it then follows that

d̄(n) ≥ 1√
2
‖vi P

n‖TV

‖vi‖TV
=

1√
2
‖λn

i vi‖TV

‖vi‖TV
=

1√
2
|λi|n .

This can be sharpened a bit. By Lemma 4.8, if k ∈ N then

d̄(n) = k

√
d̄(n)k ≥ k

√
d̄(nk) ≥ k

√
1√
2
|λi|nk =

1
21/2k

|λi|n ,

and taking k →∞ it follows that

d̄(n) ≥ |λi|n .
In continuous time the proof of the lemmas and theorem are simi-

lar. However, the eigenvalues of Ht are of form e−(1−λi) t, and so their
magnitudes are

∣∣e−(1−λi) t
∣∣ = e−(1−Reλi) t.

Remark 4.10. For a reversible chain 1 − λ1 = λ ≤ Φ̃, as seen by
setting f = 1A to be the indicator of a set in the definition of λ. It
follows that if Φ̃ ≤ 1 then

d(n) ≥ 1
2
|λ1|n ≥ 1

2
(1− Φ̃)n ,



72 Lower Bounds on Mixing Times and their Consequences

which is a slight improvement over the bound in the previous section.
It is unclear if the bounds are directly comparable for non-reversible
chains.

Remark 4.11. The argument in this section is taken from [62]. When
the eigenvector corresponding to an eigenvalue is known explicitly then
stronger lower bounds are possible. Wilson [78] gives such a lower bound
for real valued eigenvalues (e.g. a reversible walk), Saloff-Coste [72]
extends this to complex eigenvalues, and Wilson [79] shows a related
result in terms of eigenvalue / eigenvector pairs of a “lifted” chain. For
instance, Wilson uses this final bound to show a lower bound of order
m3 logm on the mixing of the m-card Rudvalis shuffle, matching an
upper bound of the same order, with the logm term arising from his
stronger lower bound.

4.3 A log-Sobolev lower bound

Another lower bound on mixing time involves the log-Sobolev constant
ρ, discussed earlier in Definition 1.9. The advantage of a bound in terms
of this constant over that in terms of λ is that ρ ≤ λ/2 (see Remark
1.11), and so a lower bound in terms of this may be significantly larger
than the spectral bound in terms of λ1 = 1− λ.

Example 4.12. Recall that the random transposition shuffle on an m
card deck is one in which a pair of cards are chosen uniformly and their
positions are then swapped. This shuffle is known to have τ2(1/e) =
Θ(m logm). The spectral gap is λ = Θ(1/m) and so the spectral lower
bound in the previous section only establishes the bound τ2(1/e) =
Ω(m). However, ρ = Θ(1/m logm) is smaller than λ, and it will be
seen below that the continuous time version of this shuffle has τ2(1/e) ≥
1
2ρ = Ω(m logm), the correct bound.

The lower bound we give is taken from [25], but we discuss it again
here as the original write-up omits many details.

Theorem 4.13. A reversible, continuous time Markov chain will sat-
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isfy
1
2ρ

≤ τ2(1/e) ≤ 1
4ρ

(
4 + log log

1
π∗

)
.

Remark 4.14. Such a bound is not possible in discrete time. Consider
the walk on the complete graph Km with transitions ∀x, y : P(x, y) =
1/m. This reaches stationary in a single step, so τ2(1/e) = 1. However,
ρ < 1/ logm because if x ∈ Ω then E(δx, δx) = m−1

m2 < 1
m and Ent(δ2x) =

1
m logm.

Likewise, the bound does not hold for non-reversible chains either,
even with a laziness assumption. See Example 5.5 for an example of a
lazy walk on a pair of cycles Z/mZ, where ρ = Θ(1/m2) but τ2(1/e) =
Θ(m).

One consequence of this is a lower bound on the log-Sobolev con-
stant.

Corollary 4.15. The log-Sobolev constant ρ and spectral gap λ of a
(non-reversible) Markov kernel P satisfy

λ

2
≥ ρ ≥ λ

2 + log 1−π∗
π∗

.

Diaconis and Saloff-Coste improve the lower bound slightly to ρ ≥
(1−2π∗) λ

log 1−π∗
π∗

, which is an equality for a walk on the complete graph

Km. Even our weaker corollary is still sharp, since for any walk on the
two-point space {0, 1} with π(0) = π(1) = 1/2 the upper and lower
bounds are the same, and so ρ = λ/2 in this case.

Proof. Suppose P is reversible. Then by Theorem 4.13 and Corollary
1.6 the continuous-time Markov chain associated with P will satisfy

1
2ρ

≤ τ2(1/e) ≤ 1
λ

(
1
2

log
1− π∗
π∗

+ 1
)
.

Re-arranging terms gives the lower bound in the corollary. The upper
bound follows from Remark 1.11.

In the general case, recall that EP(f, f) = EP+P∗
2

(f, f), and so ρ =
ρP+P∗

2
and λ = λP+P∗

2
. The corollary, in the case of the reversible chain

P+P∗
2 , then implies the non-reversible case as well.
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In order to motivate the proof of the theorem, observe that (by a
tedious but elementary calculation, see around Equation (3.2) of [25]))
if p : R+ → [2,∞) is differentiable, p(0) = 2, and f : Ω → R, then

d

dt

∣∣∣∣
t=0

‖Htf‖p(t) = ‖f‖−1
2

(
p′(0)

4
Ent(f2)− E(f, f)

)
. (4.4)

In this relation, if p(t) = 2
1−t/τ2(ε) then p′(0) = 2/τ2(ε) and this deriva-

tive contains entropy, a Dirichlet form, and mixing time. This suggests
that the derivative of an appropriate matrix norm type quantity might
allow us to relate log-Sobolev and mixing time.

The key to studying the derivative of a matrix norm will be Stein’s
Interpolation Theorem. Recall that a function h : Ω → R is log-
convex if its logarithm is convex, or equivalently if h((1− s)x+ s y) ≤
h(x)1−sh(y)s when s ∈ [0, 1] and x, y ∈ Ω.

Theorem 4.16 (Stein Interpolation, see [71, 76]). Suppose that
T (z) : CΩ → CΩ is an operator on complex-valued functions which is
defined for z ∈ C. If T (·) is continuous on the strip {z : 0 ≤ Re(z) ≤ 1},
uniformly bounded, and analytic in the interior of the strip, then

(α, β, γ) → max
y∈R

‖T (γ + iy)‖1/α→1/β

is log-convex on [0, 1] × [0, 1] × [0, 1], where ‖M‖p→q is the smallest
value satisfying the relation

‖M f‖q,π ≤ ‖M‖p→q ‖f‖p,π for all f : Ω → C .

Proof. [Proof of Theorem 4.13] The upper bound is from the reversible,
continuous time case considered after Corollary 2.4.

For the lower bound, let E denote the expectation operator, which
is just the square matrix in which every row is just π, and define T (z) =
Hτz−E = e−(I−P)τz−E with τ = τ2(ε). This is continuous, analytic and
uniformly bounded on 0 ≤ Rez ≤ 1, because eAz has these properties
for any choice of A. We will later show that ‖Hiy − E‖2→2 ≤ 1 and
‖Hτ+iy − E‖2→∞ ≤ ε. Then interpolation along the line `(s) = (1 −
s)

(
1
2 ,

1
2 , 0

)
+ s

(
1
2 , 0, 1

)
for s ∈ [0, 1] yields the relation

‖Hsτ −E‖2→ 2
1−s

≤ max
a,b∈R

‖H0+ia − E‖1−s
2→2‖Hτ+ib − E‖s

2→∞ ≤ εs .
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It follows that if f : Ω → R then

ε−s‖(Hsτ − E)f‖2/(1−s) ≤ ‖f‖2 .

This is an equality at s = 0, and as the right side is constant in s

then the derivative of the left side at s = 0 is non-positive. Equation
(4.4) and the product rule show that

d

ds

∣∣∣∣
s=0

ε−s ‖(Hsτ − E)f‖ 2
1−s

=
d

ds

∣∣∣∣
s=0

ε−s ‖Hsτ (f − Ef)‖ 2
1−s

=
1

2‖f − Ef‖2

(−2‖f − Ef‖2
2 log ε+ Ent((f − Ef)2)− 2τE(f, f)

)

≤ 0 .

Re-arranging terms, this becomes

Ent((f −Ef)2) ≤ 2τE(f, f) + 2Var(f) log ε .

To go from this to a relation involving Ent(f2), we require an inequality
of Rothaus [21].

Ent(f2) ≤ Ent((f −Ef)2) + 2Var(f) .

Combining these two previous inequalities, and setting ε = 1/e and
τ = τ2(1/e) then this implies that

τ ≥ sup
Ent(f2)
2E(f, f)

=
1
2ρ
.

It remains only to show the assumptions about T (z). The following
three points are key to the argument, where z = x + iy ∈ C and
f : Ω → C:

(1) Hz = Hx+iy = HxHiy = Hiy Hx.
(2) Hiy is unitary and so ‖Hiyf‖2 = ‖f‖2.
(3) Hz Ef = EHzf = Ef .

The first and third claims are easily verified. For the second, recall
that a matrix T is unitary if T ∗ T = I. Then, if f : Ω → C,

‖Tf‖2
2 = 〈Tf, Tf〉π = 〈T ∗Tf, f〉π = 〈f, f〉π = ‖f‖2

2
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and so ‖T‖2→2 = 1. In the case at hand, P is reversible and so

H∗
iy =

(
e−iy(I−P)

)∗
= e−iy(I−P∗) = eiy(I−P∗) = eiy(I−P) .

Checking the condition for a unitary matrix,

H∗
iy Hiy = eiy(I−P)e−iy(I−P) = I ,

and so Hiy is unitary, and in particular ‖Hiyf‖2 = ‖f‖2.
Now for the first desired bound, ‖Hiy − E‖2→2 ≤ 1. If f : Ω → C

then

‖(Hiy − E)f‖2 = ‖Hiy(f −Ef)‖2 = ‖f − Ef‖2 ≤ ‖f‖2

where the inequality is because minc ‖f − c‖2 = ‖f − Ef‖2.
Now for the next bound, ‖Hτ2(ε)+iy − E‖2→∞ ≤ ε. Let f : Ω → C

and τ = τ2(ε). Then

‖(Hτ+iy − E)f‖∞ = ‖(Hτ − E)Hiyf‖∞
≤ ‖Hτ − E‖2→∞‖Hiyf‖2

= ‖Hτ − E‖R
2→∞‖f‖2

= ‖H∗
τ − E‖R

1→2‖f‖2

≤ ε ‖f‖2

where ‖ · ‖R
p→q denotes the operator norm taken over real valued func-

tions only.
The first equality and inequality in this bound are straightforward.

Now, if f : Ω → C and T acts on functions, then

‖Tf‖2
∞ = sup

x
((TRef)(x))2 + ((T Imf)(x))2

≤
(
‖T‖R

2→∞
)2 (‖Ref‖2

2 + ‖Imf‖2
2

)
=

(
‖T‖R

2→∞
)2
‖f‖2

2 ,

and so ‖T‖2→∞ = ‖T‖R
2→∞, which gives the second equality in the

bound when T = Hτ − E.
For the third equality, let q ∈ [2,∞] and q∗ ∈ [1, 2] be conjugate

exponents (i.e. 1/q+ 1/q∗ = 1). If f, g : Ω → R, and the operator norm
is over real functions only, then

‖T‖2→q = sup
‖f‖2=1

‖Tf‖∞ = sup
‖f‖2=1

sup
‖g‖q∗=1

|〈Tf, g〉π|
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= sup
‖f‖2=1

sup
‖g‖q∗=1

|〈f, T ∗g〉π| = sup
‖g‖q∗=1

sup
‖f‖2=1

|〈T ∗g, f〉π|

= sup
‖g‖q∗=1

‖T ∗g‖2 = ‖T ∗‖q∗→2 .

We used Lp duality via the relation ‖f‖q = sup‖g‖q∗=1 |〈f, g〉π| in the
argument above.

To bound the operator norm in the final inequality, without loss
restrict attention to g ≥ 0 and ‖g‖1,π = 1, i.e. g is a density. Denote
this by h0 = g and ht = H∗

t g. Then,

‖(H∗
τ2(ε) − E)h0‖2 = ‖hτ2(ε) − 1‖2 ≤ ε

by definition of τ2(ε).

4.4 Comparing Mixing Times

Recall from Section 2.3 that the spectral gap, log-Sobolev constant,
Nash-inequality or spectral profile of a chain P can be bounded in terms
of that of another chain P̂. However, suppose that none of these quan-
tities are known for P̂, but it’s mixing time is known (for instance by
coupling). In this case it is still possible to use a comparison argument
to say something about the mixing time of P.

Randall and Tetali [70] give a variety of problems where compar-
ison of mixing times is the only method known for upper bounding
convergence. One such problem is that of domino tilings. Suppose a
rectangular region is tiled by dominoes (i.e. rectangles with dimensions
1×2). A natural Markov chain to sample domino tilings would choose a
square 2×2 region, and if there are two parallel dominoes in it then ro-
tate them by 90◦, otherwise do nothing. The authors bound the mixing
time of this walk by comparing it to a walk in which the steps involve
modifying “towers” of dominoes at each step.

Now, recall that by Theorem 2.14 it follows that λP ≥ 1
MAλP̂, where

M and A are defined in the theorem. If (non-reversible) P has holding
probability α then Corollary 1.14 shows that

τP(ε) ≤ τ2,P(2ε) ≤
⌈
MA

αλP̂

log
1

2ε
√
π∗

⌉
. (4.5)
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More generally, if only a mixing time bound for some P̂ is known,
then by Theorem 4.9 it follows that dP̂(n) ≥ 1

2 |λ1(P̂)|n. If P̂ is reversible
then

λP̂ = 1− λ1(P̂) ≥ 1− n

√
2dP̂(n) . (4.6)

Equation (4.5) can now be applied, even if P is non-reversible.
If α ≈ 0 then the above result is insufficient. However, if P̂ is re-

versible then dP̂(n) ≥ 1
2 λmax(P̂)n, and so λmax(P̂) ≤ n

√
2dP̂(n). By

Theorem 2.16, if the path lengths are restricted to odd length then
the smallest eigenvalue can be compared as well, and in particular it
follows that

1− λmax(P) ≥ 1− λmax(P̂)
MA∗

≥ 1− n
√

2dP̂(n)
MA∗

.

By the reversible case in Corollary 1.14,

τP(ε) ≤ τ2,P(2ε) ≤
⌈

1
1− λmax

log
1

2ε
√
π∗

⌉

≤
⌈

MA∗

1− n
√

2dP̂(n)
log

1
2ε
√
π∗

⌉
.

If P̂ is not reversible then Theorem 4.9 does not give useful in-
formation on spectral gap λP̂. Instead, recall from Theorem 4.1 that
dP̂(n) ≥ 1

2 (1− nΦ̃P̂). Re-arranging terms it follows that

Φ̃P̂ ≥ max
n>0

1− 2dP̂(n)
n

≥ 1− 1/e
τP̂(1/2e)

.

By Theorem 5.7 we have

λP̂ ≥
Φ̃2

P̂

4
≥ 1

11τP̂(1/2e)2
,

and Equation (4.5) then gives a mixing time bound for P.
What choice of n is good in the above bounds? One can let

n = τP̂(1/2e) and use the approximation 1 − e−1/n ≥ 1/(n + 1) for
n ≥ 1 to get the relation λP̂ ≥ 1/(1 + τP̂(1/2e)) in Equation (4.6).
However, generally bounds on distance are of the form d(n) ≤ BCn,
while most mixing time bounds are of the form τ(ε) ≤ D+E log(1/ε),
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or equivalently d(n) ≤ eD/E e−n/E . Taking n → ∞ then we have the
simpler expression λP̂ ≥ 1− C or λP̂ ≥ 1− e−1/E .

These various cases are summarized as follows:

Theorem 4.17. Suppose that P and P̂ are Markov chains, with hold-
ing probability α, relative density at most M = maxx

π(x)
π̂(x) , and let A

and A∗ be as in Theorems 2.14 and 2.16. Then,

if P̂ and P reversible:

τP(ε) ≤ τ2,P(2ε) ≤
⌈
MA∗(1 + τP̂(1/2e)) log

1
2ε
√
π∗

⌉

if P̂ reversible, P not:

τP(ε) ≤ τ2,P(2ε) ≤
⌈
MA

α
(1 + τP̂(1/2e)) log

1
2ε
√
π∗

⌉

if P̂ not reversible:

τP(ε) ≤ τ2,P(2ε) ≤
⌈

11MA

α
τP̂(1/2e)2 log

1
2ε
√
π∗

⌉

In short, little is lost if P and P̂ are reversible, while if P is non-
reversible and α ≈ 0 then problems occur, and in the worst case if P̂

is non-reversible then its mixing time must be squared. See Example
5.4 for examples showing that the various cases just given above are
necessary, and not just artifacts of the method of proof.

Related results hold for continuous time chains as well, with the
advantage of there being no need for α. The details are similar and
are left to the interested reader. See [29] for additional examples, for
discussion on the continuous time case, and for an alternate comparison
method involving vertex congestion instead of edge congestion A(Γ).
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Examples

We start with elementary examples illustrating sharpness of the various
bounds derived in this survey. This is followed by discussion of time for
Pollard’s Rho algorithm for the discrete logarithm to have a collision, a
case of studying mixing of a non-reversible chain with no holding prob-
ability. The next section involves turning the tables a bit, and instead
of using Cheeger inequalities to study mixing, we use mixing results to
generalize Cheeger inequalities to non-reversible Markov chains. The
chapter finishes with a discussion of the Thorp shuffle, a problem in
which the full generality of methods in this volume are required, that
is, methods for non-reversible chains with no holding probability and
a spectral or evolving set profile.

5.1 Sharpness of bounds

In this section we give examples demonstrating the strengths and weak-
nesses of the various results developed in this survey. These include mix-
ing time upper bounds (Examples 5.1, 5.2 and 5.3), mixing time lower
bounds (Examples 5.2, 5.3 and 5.5), reversibility and non-reversibility
issues (Example 5.2, 5.3 and 5.5), comparison of mixing times (Example

81
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5.4), and an example which illustrates both why squared terms occur
in several bounds as well as why the log-Sobolev lower bound cannot
be generalized to non-reversible walks (Example 5.5).

Perhaps the simplest test case is random walk on the complete graph
Km.

Example 5.1. Given α ∈ [− 1
m−1 , 1] consider the walk on Km with

P(x, y) = (1−α)/m for all y 6= x and P(x, x) = α+(1−α)/m, that is,
choose a point uniformly at random and move there with probability
1− α, otherwise do nothing.

The n step distribution is Pn(x, x) = 1
m +αn

(
1− 1

m

)
and Pn(x, y) =

1
m − αn

m for all y 6= x. Therefore, when α ∈ [0, 1] then D(Pn(x, ·)‖π) =

(1 + om(1))αn logm as m → ∞. When α ∈
[
−1

m−1 , 1
]

then ‖Pn(x, ·) −
π‖TV = |α|n(1− 1/m) and ‖Pn(x, ·)− π‖2 = |α|n√m− 1.

First, let us consider spectral methods. This walk has trivial eigen-
value 1 and m − 1 copies of eigenvalue α. It follows that λmax = |α|
and hence by Corollary 1.14

‖Pn(x, ·)− π‖2 ≤ |α|n√m− 1 ,

the correct bound.
Now for evolving sets. If α ∈ [0, 1] then

π(Au) =





0 if u ∈ (α+ (1− α)π(A), 1]
π(A) if u ∈ ((1− α)π(A), α+ (1− α)π(A)]
1 if u ∈ [0, (1− α)π(A)]

A quick calculation shows that Cz(1−z) = Cz log(1/z) = C√
z(1−z)

=

α, and so Corollary 3.9 implies ‖Pn(x, ·) − π‖TV ≤ αn (1 − 1/m),
D(Pn(x, ·)‖π) ≤ αn logm and ‖Pn(x, ·)−π‖2 ≤ αn

√
m− 1. Total varia-

tion and L2 bounds are correct, while relative entropy is asymptotically
correct.

When α ∈
[
−1

m−1 , 0
)

then a similar calculation shows that Cz(1−z) =
C√

z(1−z)
= −α and so ‖Pn(x, ·) − π‖TV ≤ (−α)n (1 − 1/m) and

‖Pn(x, ·)− π‖2 ≤ (−α)t
√
m− 1. Again, both are exact.

The lower bound of Theorem 4.9 is

‖Pn(x, ·)− π‖TV ≥ 1
2
|α|n
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which is quite close to the correct value of |α|n (1− 1/m).
The conductance of the walk is Φ̃ = 1 − α and so Theorem 4.1

implies d(n) ≥ 1
2 (1 − n(1 − α)) which is comparable to the spectral

bound only when α is close to one.

In the non-reversible case, even when the discrete time upper
bounds fail the lower bound may be useful.

Example 5.2. Consider a non-reversible walk on the triangle {0, 1, 2}
with P(0, 1) = P(1, 2) = 1 and P(2, 2) = P(2, 0) = 1/2. Then π(0) =
π(1) = 1/4, π(2) = 1/2, the chain mixes quite rapidly, but λPP∗ = 0
and Cf = 1 for any choice of f(x), so all discrete time upper bounds
fail. This failure occurs because these methods require that distance
decrease at every step, but if the initial distribution is all at vertex {0}
then it will take two steps before distance decreases (once vertex {2}
is reached).

The continuous time bounds are better. Observe that Φ̃ = 1 and
λ ≥ Φ̃2/4 = 1/4, and so Corollary 1.6 and Equation 3.11 both show
mixing in time τ2(ε) = O(log(1/ε)), which is correct.

The eigenvalues of this chain are λi = 1, −1±i
√

7
4 and so |λmax| =

1/
√

2 while Reλ′ = −1/4. The mixing time lower bounds are then

d(n) ≥ 1
21+n/2

and d(t) ≥ 1
2e5t/4

.

The conductance is Φ̃ = 1 and the bound of Theorem 4.1 provides
no information.

Generally, the discrete-time upper bounds in this paper tend to
be poor for non-reversible chains which are strongly inclined to move
to a specific neighbor, as in the previous case. We give now a more
interesting example of this; a chain constructed by Diaconis, Holmes
and Neal [23] specifically for the purpose of speeding mixing.

Example 5.3. Consider a random walk on the cycle Z/2mZ, labeled
as

Ω = {−(m− 1),−(m− 2), . . . , 0, . . . , (m− 1),m}
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with transitions P(i, i + 1) = 1 − 1/m and P(i,−i) = 1/m. Dia-
conis, Holmes and Neal [23] show that τ(ε) = Θ(m log(1/ε)) and
τ2(ε) = Θ(m log(m/ε)), both much faster than the time Θ(m2 log(1/ε))
required by a simple random walk on a cycle.

The discrete-time upper bound on mixing time given in Corollary
1.14 requires computation of λPP∗ . Now, PP∗ is given by PP∗(i,−i −
1) = 2

m(1− 1
m) and PP∗(i, i) = (1− 1/m)2 + (1/m)2 = 1− 2

m

(
1− 1

m

)
.

The space is then disjoint, such that no transitions can be made between
set A = {−bm/2c, . . . , bm/2c−1} and its complement. In particular, if
f = 1A then EPP∗(f, f) = 0 and so λPP∗ = 0. Again, the upper bound
tells nothing. We note in passing that evolving set ideas do no better,
because if A = {1,−2} and B = Ω \ {2,−1} then π(B) = π(Ac) and
yet φ̃(A) ≤ Q(A,B)

π(A)π(Ac) = 0; hence 0 = φ̃ ≥ Cf and so Cf = 0 for all
concave functions f .

In contrast, consider the continuous-time case. In [29] it is ob-
served that λ = O(1/m2), as λ ≤ E(|i|, |i|)/Varπ(|i|). Of course, every
set A will have at least one transition i → i + 1 from some i ∈ A

to i + 1 /∈ A, and for instance the set A = {−bm/2c, . . . , bm/2c}
has exactly one transition to its complement, so Φ = Θ(1/m). Con-
sequently, λ ≥ Φ2/2 = Ω(1/m2), and so λ = Θ(1/m2). This time
the conductance and spectral continuous-time upper bounds are both
τ2(ε) = O(m2 log(m/ε)).

To lower bound mixing, recall that Φ̃ = Θ(1/m). Also, note that if
f(i) = (−1)i for all i ∈ Z/2mZ, then P(f)(i) = −(1 − 2

m)(−1)i, and
so λk = −(1− 2/m) is an eigenvalue of P. Then Theorems 4.1 and 4.9
both show that in both discrete and continuous time τ(1/2e) = Ω(m),
and so once again even though the upper bound on mixing is either
weak or useless, the lower bound is of the correct order.

Many of the fast mixing non-reversible chains are designed in a
similar fashion, moving with high probability to a specific neighbor,
and while this can speed mixing, it worsens our bounds because PP∗

becomes like the identity matrix. Another instance of similar behavior
can be found in Example 5.5 later.

We now consider the various cases appearing in Theorem 4.17, the
theorem on comparison of mixing times. Simple examples are given
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showing that each of the cases in the theorem are necessary. In each
case the stationary distribution is uniform, so M = 1.

Example 5.4. First, suppose P̂ and P are the (reversible) lazy simple
walks on the complete graph Km with K(x, x) = 1/2 and K(x, y) =
1/2(m − 1) if y 6= x. Then τP̂(1/2e) = 3, while τ2,P(1/2e) = Θ(logm)
(see Example 5.1, with α = 1

2(1− 1
m−1) ≈ 1/2).

For the remaining cases, we consider variants of walks on a cycle
Z/mZ of even length m. Please check Equation (2.4) to recall the mix-
ing time of this walk.

Now, suppose P̂ is the (reversible) lazy simple walk (i.e. P̂(i, i) = 1/2
and P̂(i, i± 1) = 1/4), but P is the (reversible) periodic simple random
walk (i.e. P(i, i ± 1) = 1/2). Then P̂ converges while P does not. This
is reflected in A∗, because ∀x ∈ Ω : P̂(x, x) > 0 and so an odd length
path γxx must be given. However, this must then include a loop at some
vertex j, with probability P(j, j) = 0, and so A∗ = ∞.

Next, if P̂ is still the (reversible) lazy simple walk, but P is the
(non-reversible) walk with counterclockwise drift given by P(i, i− 1) =
1− e−m and P(i, i) = e−m, then τP̂(1/2e) = Θ(m2) while τ2,P(1/2e) =
Θ(m2 em) and so the α = e−m term is necessary in this case.

Last of all, we consider a variant of Example 5.3. Consider the walks
in Figure 5.1 on two copies of the cycle Z/mZ, denoted as −1 (coun-
terclockwise) and +1 (clockwise). Let P̂ be a lazy (non-reversible) walk
which half the time does nothing, while with probability 1

2(1−1/100m)
it moves according to the sign of the cycle it is on, and with probabil-
ity 1/200m it changes to the other copy (but otherwise keeps the same
position). Also, let P be a (reversible) walk defined the same, except
that with equal probabilities 1

4(1 − 1/100m) it will move in direction
+1 or −1, regardless of the cycle it is on. The walk P̂ circles the cycle
roughly 100m times before changing cycles, and does this at a point
essentially uniformly distributed, so τP̂(1/2e) = Θ(m). Meanwhile, the
position P takes on the cycles is basically the same as that of a lazy
walk on a single cycle, and so τ2,P(1/2e) = Θ(m2). When P̂(x, y) > 0
then P(x, y) ≥ P̂(x, y)/2, so A ≤ 2 is insignificant. This explains the
need for squaring when P̂ is non-reversible.
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The example above, of a walk on two copies of a cycle, illustrates the
reason for which our reversible and non-reversible results often differ
by square factors. Let us explore this more carefully.

1

200m
1

200m

1

200m

1

200m

(2 100m1 )1 1

each
(4 100m1 )1 1
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Non−reversible walk Reversible walk

Fig. 5.1 Non-reversible and reversible walks on a pair of cycles.

Example 5.5. We now consider more carefully the walks P̂ and P

(non-reversible and reversible, respectively) on two copies of a cycle,
as given at the end of the previous example. Observe that in this final
example, P+P∗

2 = P̂+P̂∗
2 , and so even though the mixing times are sub-

stantially different the conductance and spectral gap will be the same
(as EP̂(f, f) = E P̂+P̂∗

2

(f, f) = EP(f, f)). This illustrates the reason for

which our results are often not sharp on non-reversible chains, as the
reversible version of the same chain may mix much more slowly.

By the remark above, it suffices to calculate Φ̃, λ, and ρ for P. Now,
Φ̃ = 1/100m, with the extreme case Φ̃(A) where A is one of the cycles.
Likewise, λ = Θ(1/m2) because λ ≥ Φ̃2/4 = Ω(1/m2) by Cheeger’s
inequality, but λ ≤ 1

2(1− cos(2π/m)) ≈ π2

m2 as 1
2(1 + cos(2π/m)) is an

eigenvalue with eigenfunction f(j) = cos(2πj/m) on both cycles (where
j ∈ [0 . . .m − 1] indicates position on the cycle). Moreover, the log-
Sobolev constant satisfies ρ ≤ λ

2 = O(1/m2) by Proposition 1.10, while
in continuous time τ2(1/e) = Θ(m2) and so ρ ≥ 1

2τ2(1/e) = Ω(1/m2) by
Theorem 4.13, which combine to show ρ = Θ(1/m2).
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Now let us consider the various mixing bounds. The upper bound
τ2(ε) ≤ 1

λ log(1/ε
√
π∗) is then asymptotically correct for the reversible

walk P, but about the square of the correct value for the non-reversible
walk P̂; the same holds for the bound τ2(ε) ≤ 1

Φ̃2
log(1/ε

√
π∗). Turning

to lower bounds, the lower bound d(n) ≥ 1
2(1 − Φ̃)n will be of the

correct order for the non-reversible walk P̂, but far too pessimistic for
the reversible walk P. The spectral lower bound for the reversible walk
P will be 1

2(1 − λ)n ≤ d(n), which is of the correct order, while for
the non-reversible walk P̂ an eigenvalue satisfies |λi| = 1 − Θ(1/m),
which gives a correct order lower bound. Finally, in continuous time
τ2,P(1/2e) = Θ(m2) and τ2,P̂(1/2e) = Θ(m) due to the same reasons
given earlier for the discrete-time walks. Since ρ = Θ(1/m2), then the
continuous time lower bound of Theorem 4.13 in terms of log-Sobolev
constant ρ gives the correct bound for the reversible walk P. This also
shows why Theorem 4.13 cannot apply to non-reversible walks, because
it would imply that τP̂ = Ω(m2), which is incorrect.

5.2 Discrete Logarithm

Certain encryption algorithms rely on the difficulty of finding a discrete
logarithm, that is, given that y = xk for fixed x and y in some finite
cyclic group G, determine the power k. The best algorithm for finding
discrete logarithm over a general cyclic group seems to be the Pollard
Rho algorithm, and it is widely conjectured to require O(

√
n) steps

for the algorithm to work, where n = |G|. Miller and Venkatesan [56]
recently gave a proof that the Pollard Rho algorithm for discrete loga-
rithm runs in time

√
n log3 n, the first result within logarithmic factors

of the conjectured bound. In this section we discuss their result.
Pollard’s Rho algorithm works by taking a random walk with tran-

sitions P(z, zx) = P(z, zy) = P(z, z2) = 1/3 and stopping at the first
collision time, that is, the first time the Markov chain returns to a pre-
viously visited state. Equivalently, consider the random walk on a cycle
Z/pZ with transitions given by P(i, i+1) = P(i, i+k) = P(i, 2i) = 1/3.
As we will see below, to find the first collision time it suffices to find
L∞ mixing time, but since the random walk is non-reversible and non-
lazy then classical bounds in terms of λ could not be used. However,
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by Equation (7.4) in the Appendix and Proposition 1.12 it follows that
if a, b ∈ Z/pZ then

|ka
n(b)− 1| ≤ ‖ka

0 − 1‖2‖k∗bn − 1‖2 ≤ ‖P−E‖n
2→2

1− π∗
π∗

,

where ‖P − E‖2→2 = supf :Ω→R
‖P(f)−Eπf‖2

‖f‖2 , as in Definition 1.18 and
Remark 1.19. Consequently,

τ∞(ε) ≤
⌈

1
1− ‖P−E‖2→2

log
1− π∗
επ∗

⌉
.

The authors’ main results in [56] are a proof of a related (but equiva-
lent) statement in the special case of a simple random walk on a regular
degree directed graph, and a proof that for some c ∈ R+ that

‖Pf‖2 ≤
(

1− 1
c(logn)2

)
‖f‖2 for all f : Ω → C, Ef = 0 . (5.1)

Recall from Remark 1.19 that this is equivalent to the statement
that

‖P− E‖2→2 ≤ 1− 1
c(log n)2

.

It follows that

τ∞(ε) ≤
⌈
c log3 n+ c log2 n log

1
ε

⌉
.

To check for a collision, let S consist of the states visited in the
first t = b√nc steps. If |S| < t then a collision occurred, and we are
done, so without loss assume |S| = t. Now, τ∞(1/2) ≤ (c + 1) log3 n,
and so every (c+1) log3 n steps there is a ≥ π(S)/2 ≈ 1/2

√
n chance of

ending in set S, and having a collision. In particular, in 2
√
n log(1/ε)

repetitions of a (c + 1) log3 n-step process, the chance of never ending
in S is at most

Prob ≤ (1− 1/2
√
n)2

√
n log(1/ε) ≤ ε.

More generally, this shows that if T denotes the first collision time of
a Markov chain then

Prob(T > 2
√
nτ∞(1/2) log(1/ε)) ≤ ε .
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Remark 5.6. Miller and Venkatesan’s proof of Equation 5.1 was based
on considering characters of a transition matrix, and reducing the prob-
lem to one of bounding a quadratic form. We suggest here that a more
elementary argument might be possible, as it is illustrative of how tech-
niques in this survey can be extended further.

Observe that in 3 log2 n steps the walk will make an i → 2i step
about log2 n times, for a total distance traveled of at least 2log2 n = n,
i.e. at least one circuit of the cycle is completed. This suggests every
pair of vertices x, y ∈ Ω can be connected by canonical paths of length
|γxy| = O(logn). No particular edge appears to be a bottleneck in this
graph, so each edge should have about

O

( (|Ω|
2

) ∗max |γxy|
|Ω|minx∈Ω deg(x)

)
= O(|Ω| logn)

paths passing through it, making for congestion A = O(log2 n). Hence,
perhaps canonical paths can be used to show λP = Ω(1/ log2 n).

Unfortunately, to upper bound mixing time with Corollary 1.14
requires consideration of λPP∗ , which is only lower bounded by λP when
the holding probability α is non-zero. This is sufficient to study a lazy
version P′ = 1

2(I + P) of the Pollard Rho walk, as λP′P′∗ ≥ λP′ = 1
2λP,

but this may slow the walk by a factor of two.
Instead, consider a slightly modified walk P̂ with P̂(i, i+1) = P̂(i, i+

2) = 1/6 and P(i, i + k) = P(i, 2i) = 1/3; that is, split the i → i + 1
step into two parts. This might potentially speed the walk, as the local
i→ i+ 1 move can now go twice as far with i→ i+ 2.

The lazy version of this walk, M = 1
2(I + P̂) will satisfy λMM∗ ≥

λM = 1
2λP̂, and so it remains to relate λMM∗ to λP̂P̂∗ . Instead, recall

from Remark 1.16 that since K = P̂P̂∗ is reversible then

λP̂P̂∗ = λK ≥ 1
2
λKK∗ =

1
2
λ(P̂P̂∗)2 .

Furthermore, a direct computation verifies that

∀x 6= y : (P̂P̂∗)2(x, y) ≥ 1
54

(MM∗)(x, y)

and so E(P̂P̂∗)2(f, f) ≥ 1
54EMM∗(f, f), and in particular, λ(P̂P̂∗)2 ≥

1
54λMM∗ .
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Putting all these statements together, we have that

λP̂P̂∗ ≥
1
2
λ(P̂P̂∗)2 ≥

1
108

λMM∗ ≥ 1
216

λP̂ ,

and so a canonical path result for λP̂ will suffice to show mixing of this
walk, even though it has zero holding probability.

More generally, given any walk K, with lazy version M = 1
2(I+K), if

∀x 6= y : (KK∗)2(x, y) ≥ cMM∗(x, y) for some c > 0 then λKK∗ ≥ c
4λK,

and in particular the mixing time can be bounded by constructing
canonical paths.

5.3 New Cheeger Inequality

Early results in bounding mixing times relied heavily on Cheeger’s in-
equality,

Φ̃ ≥ λ ≥ 1−
√

1− Φ2 ≥ Φ2/2 .

Cheeger’s inequality was originally shown via a direct lower bounding
of the eigenvalue gap of a reversible chain, and then applied to bound
mixing times. In this section we use mixing results to give an alternate
method of proof for Cheeger-like inequalities. First, we consider a re-
lated inequality in terms of Φ̃, instead of Φ, a bound which will be used
to slightly improve bounds for the Thorp shuffle. Next, we generalize
this and show that the f -congestion of (P + P∗)/2 provides a more
general lower bound for 1− λ. Finally, given that Cheeger’s inequality
was originally shown in terms of eigenvalues of reversible chains, it is
natural to wonder if a similar relation holds for eigenvalues of non-
reversible chains. In an interesting turn of the tables, it is possible to
use our mixing time results to answer this question.

The tools developed in the previous two chapters can be used to
prove an alternate form of Cheeger’s inequality, which is sometimes
stronger:

Theorem 5.7.

λ ≥ 2
(

1−
√

1− Φ̃2/4
)
≥ Φ̃2/4 .
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Proof. Suppose the Markov chain of interest is reversible. Then λ =
1− λ1. It follows from Theorem 4.9 that

d(t) ≥ 1
2
e−(1−maxi6=0 Reλi)t =

1
2
e−λ t.

However, from the evolving set bound (3.10) it is also known that

d(t) ≤ 1
2
e
−2t

“
1−
√

1−Φ̃2/4
”√

1− π∗
π∗

.

Combining these two bounds shows that

exp
[
−t

(
λ− 2

(
1−

√
1− Φ̃2/4

))]
≤

√
1− π∗
π∗

.

Taking t→∞ implies that the exponent on the left is negative, which
gives the theorem in the reversible case.

If the chain is not reversible then it is easily verified that λ =
λ(P+P∗)/2 and Φ̃ = Φ̃(P+P∗)/2. The general bound then follows immedi-
ately from the reversible case.

Not only does the conductance Φ̃ lower bound λ, but the f -
congestion does as well.

Theorem 5.8. Given f : [0, 1] → R+, non-zero except possible at 0
and 1, then

1−max
i>0

|λi| ≥ 1− Cf .

To see this, observe that if S0 = {x} then

‖Pn(x, ·)− π‖TV ≤ Ên(1− π(Sn)) ≤ c Ên
f(π(Sn))
π(Sn)

,

where c = maxπ(A)6=0,1
π(A)(1−π(A))

f(π(A)) <∞. By Lemma 3.8,

d(n) ≤ c Cn
f max

x∈Ω

f(π({x}))
π({x}) .

The theorem then follows as before.
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Example 5.9. Consider the lazy walk on a cycle of even length which
steps to the left or right with probability 1/2 each. This has

Φ = 1/n, Φ̃ = 2/n and λ =
1
2

(
1− cos

(
2π
n

))
≈ π2

n2
.

The new Cheeger bound is a factor two better than the conventional
one:

2
n

= Φ̃ ≥ λ ≥ Φ̃2/4 =
1
n2

.

Now, the quantity Csin(πz) is maximized at the set A consisting of a
connected set of half the vertices. The values Au are easily determined,
and

λ = 1− λ1 ≥ 1− Csin(πz) =
1
2

(
1− cos

(
2π
n

))
,

the correct value.
Note that the periodic walk P(i, i± 1) = 1/2 on the even cycle has

Csin(πz) maximized at the set A given by one of the bipartitions, with
Csin(πz) = 1, implying 1− |λmax| = 1− Csin(πz) = 0, which is correct as
there is an eigenvalue λn−1 = −1.

If P is non-reversible then one can consider Cf for the chain P+P∗
2

to obtain a lower bound on λ = λP+P∗
2

. Also, by upper bounding Cf for
appropriate choices of f this can be used to show Cheeger-type bounds
in terms of conductance profile, edge and vertex expansion, and other
related quantities. See [62] for details.

The same method of proof can also be used to show a lower bound
on eigenvalues of non-reversible chains, and not just on λ. Recall that
on a reversible Markov chain 1−λ1 = λ, from which it also follows that
1− λPP∗ = λ1(PP∗) = |λmax|2, that is 1− |λmax| = 1−√1− λPP∗ . We
now generalize these relations on 1− λ1 and 1 − |λmax| to the case of
eigenvalues of non-reversible chains.

To get the two cases we require both discrete and continuous time
mixing relations.

1
2
e−(1−maxi6=0 Reλi) t ≤ d(t) ≤ 1

2
e−λ t

√
1− π∗
π∗

1
2
|λi|n ≤ d(n) ≤ 1

2
(1− λPP∗)n/2

√
1− π∗
π∗
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Then, arguing as in the proof of Theorem 5.7 implies the following:

Theorem 5.10. The non-trivial (complex-valued) eigenvalues of a fi-
nite, irreducible Markov chain P will satisfy

1−max
i>0

Reλi ≥ λ

1−max
i>0

|λi| ≥ 1−
√

1− λPP∗ ≥ λPP∗/2

It follows immediately from the Cheeger inequality λ ≥ Φ2/2 that

1−max
i>0

Reλi ≥ Φ2/2 .

This gives an alternate proof of a result of [17], which argued as in a
standard proof of Cheeger’s inequality but with a specialized Laplacian
for non-reversible chains.

The theorem shows that the real part of the eigenvalues is related
to the eigenvalue gap of the additive reversibilization P+P∗

2 (since λ =
λP = λP+P∗

2
), while the magnitude of the eigenvalues is related to the

eigenvalue gap of the multiplicative reversibilization PP∗. This is not
just an artifact of the method of proof, as the following shows:

Example 5.11. Consider the walk on a cycle of length n that steps
in the counterclockwise direction with probability one. The eigenvalues
are λk = e2πki/n. Then λPP∗ = 0 since PP∗ = I, and λ = 1− cos(2π/n)
since λ = λ

(
P+P∗

2

)
is twice that of the lazy chain considered earlier.

The theorem then shows that

1−max
i>0

Reλi ≥ λ = 1− cos(2π/n) ,

1−max
i>0

|λi| ≥ λPP∗ = 0 ,

both of which are in fact equalities.
Not only can spectral gap distinguish between the two cases, but

conductance bounds can as well. For instance, on the 3-cycle it is easily
verified that Φ = 1 and ΦPP∗ = 0. Then Cheeger’s inequality shows that

1−max
i>0

Reλi ≥ 1−
√

1− Φ2 = 1 ,

1−max
i>0

|λi| ≥ 1−
√

1− Φ2
PP∗ = 0 .
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5.4 The Thorp Shuffle

A classical problem in mixing times is to determine the number of
shuffles required to make a deck of cards well mixed. Many methods
of card shuffling have been proposed, the most famous being the riffle
shuffle, and for most of these fairly rigorous mixing time bounds are
known. One card shuffle which has proved difficult to analyze is the
Thorp shuffle. Resolving a twenty or so year old conjecture, B. Morris
[64] has shown in 2005 that the mixing time of the Thorp shuffle on 2d

cards is indeed polynomial in d.
The Thorp shuffle can be described as follows. Given a deck with

an even number of cards m, split the deck exactly in half, putting the
top m/2 cards in the left hand and the bottom m/2 in the right hand.
Now, flip a coin and drop the bottom card from the left hand if the
outcome is a heads or from the right hand if it is tails, then drop the
card from the other hand. Next, flip the coin again to decide the order
in which to drop the second pair of cards, and continue flipping and
dropping until all cards have been dropped. This makes a single shuffle.

There are three issues to consider in analyzing the Thorp shuffle
by conventional spectral or conductance methods. First, the shuffle is
non-reversible, and in fact once a shuffle is performed it is impossible
to get back to the original ordering in under d − 1 shuffles. Also, the
holding probability is only α = 1/22d−1

, so spectral gap or conductance
methods do not work as they require α to not be too small. Third,
spectral gap and conductance bounds have a log(1/π∗) term, and for
the Thorp shuffle π∗ = 1/(2d)! < 1/2d2d/2−1

, and so even taking the log
of this it is still exponential.

All of these problems can be remedied by spectral profile ΛPP∗(r) or
evolving set C√

z(1−z)
(r) methods. We borrow heavily from an evolving

set argument of Morris [64], but our more careful analysis sharpens
the mixing time bound of Morris from τ2(1/e) = O(d44) to τ2(1/e) =
O(d29).
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5.4.1 Modeling the Thorp Shuffle

Before delving into the mixing time bound we consider why a 2d card
deck is more amenable to analysis than other deck sizes. This is best
seen be considering various alternate models of the Thorp shuffle, which
we borrow from the discussion of Morris.

First, counting from the bottom of the deck, denote the initial or-
dering of the cards as 0, 1, 2, . . ., 2d − 1. A single Thorp shuffle is
equivalent to taking the cards at positions i and 2d−1 + i (for each
i ∈ 1 . . . 2d−1), and placing them in positions 2i and 2i+ 1, with order
determined by the coin flips.

Equivalently, consider the bit sequence corresponding to the card
label, for instance 1 = 0012 in an 8 card deck, and flip a coin to decide
whether to change order of the cards differing only in the most signif-
icant bit, then shift the bits to the left, wrapping around the final bit
(e.g. 0012 → 1012 → 0112 if cards 1 and 5 are interchanged). Note that
d consecutive shuffles will put the bits back in their original positions.

For a final model, take a d-dimensional cube {0, 1}d, label a ver-
tex by the binary value of its coordinates, so that vertex (0, 1, 1, 0) =
01102 = 6, and place card i at vertex i. Then, to do d consecutive
Thorp shuffles, first consider all edges in direction 0 (i.e. corresponding
to the highest order bit) and decide whether to interchange the cards at
opposite ends of each edge independently, then do the same in direction
1, 2, etc. until all d directions have been considered.

This last model has several nice features. For one, even though the
Thorp shuffle is non-reversible, flipping in a fixed direction on the cube
is reversible. Also, this makes an inductive argument possible, by con-
sidering a pseudo k-step shuffle in which only the first k coordinate
directions will be flipped. These properties suggest that it will be ben-
eficial to base a mixing time proof on the d-step Thorp shuffle, rather
than on single shuffles.

5.4.2 Spectral Profile

We begin by considering the spectral profile argument, because there
is a large audience familiar with spectral gap bounds on mixing, but
far fewer familiar with evolving sets.
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By Theorem 2.10 the holding probability is not an issue if bounds on
ΛPP∗(r) are known. A standard proof of Cheeger’s inequality, restricted
to functions supported on a set of size at most r, can be used (see [34])
to show that

ΛPP∗(r) ≥ 1−
√

1− Φ2
PP∗(r) ≥ Φ2

PP∗(r)/2. (5.2)

This shows that it is natural to consider the conductance profile of the
chain PP∗.

Theorem 5.12. Given a 2d card deck, the Thorp shuffle satisfies

ΦKK∗(A) ≥ 1− π(A)C/d14
and Φ̃KK∗ ≥ C

d14
,

where K indicates the transition kernel of the d-step shuffle, and C is
a constant independent of d.

Proof. Given set A ⊂ Ω then

QKK∗(A,A) =
∑

z∈Ω

Q(A, z)K∗(z,A) =
∑

z∈Ω

K∗(z,A)2 π(z) = ‖K∗ 1A‖2
2

(5.3)
where the second equality is because QK(A, z) = QK∗(z,A) =
π(z)K∗(z,A). Lemma 12 of Morris [64] states that if f : Ω → [0, 1]
then

‖K∗ f‖2
2 ≤ ‖f‖1+C/d14

1

for some constant C ∈ (0, 1). (See Section 5.4.4 below for a discussion
of Morris’ proof of this result.) Letting f = 1A then leads to the bound

ΦKK∗(A) =
π(A)− QKK∗(A,A)

π(A)

≥ π(A)− π(A)1+C/d14

π(A)
= 1− π(A)C/d14

.

The bound on Φ̃KK∗ follows from this:

Φ̃KK∗ = min
π(A)≤1/2

ΦKK∗(A)
π(Ac)

≥ min
x∈(0,1/2]

1− xC/d14

1− x
= 2

(
1− 2−C/d14

)

followed by the approximation 2−γ ≤ 1− γ/2 when γ ∈ [0, 1].
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This shows that when r is extremely small then ΛKK∗(r) ≥ 1 −√
2r1/2d14 ≈ 1. However, even if ΛKK∗(r) = 1 then Theorem 2.10 shows

at best τ2(ε) = O
(
log 1

π∗ε2

)
, which is still exponential. Thus, our ap-

proach to this problem will be to show that variance drops exponen-
tially fast from Var(kx

0 ) = (2d)!− 1 ≥ 2d2d/2−1
until it reaches a singly

exponential size, after which Theorem 2.10 can be used to finish the
proof.

Theorem 5.13. The mixing time of the Thorp shuffle is

τ2(ε) ≤ 8C−2 d29 (25 + log(1/ε)) ,

where C is the constant of Theorem 5.12.

Proof. To reduce clutter in the proof somewhat we define D = d14/C.
Let c = δVar(f)

2Ef in the final step of the proof of Lemma 2.9. Then

EKK∗(kn, kn) ≥ Var(kn)(1− δ)ΛKK∗(2/δVar(kn)) . (5.4)

Theorem 5.12 and the strengthened Cheeger inequality (5.2) imply that

ΛKK∗(r) ≥ 1−
√

1− Φ2
KK∗(r) ≥ 1−

√
2 r1/2D . (5.5)

Letting δ = 1
2Var(kn)1/4D it follows from (5.4) and (5.5) that

EKK∗(kn, kn)

≥ Var(kn)
(

1− 1
2Var(kn)1/4D

)(
1−

√
2

(
4

Var(kn)1−1/4D

)1/2D
)

≥ Var(kn)

(
1− 1

Var(kn)1/4D

(
1
2

+
(

22+D

Var(kn)1/2−1/4D

)1/2D
))

If Var(kn) ≥ 2(8+12D) then this simplifies to EKK∗(kn, kn) ≥ Var(kn)−
Var(kn)1−1/4D. Then by Lemma 1.13

Var(kn+1) = Var(kn)− EKK∗(kn, kn) ≤ Var(kn)1−1/4D .

It follows by induction on n that if N = 4Dd and Var(kN ) ≥ 2(8+12D)

then
Var(kN ) ≤ Var(k0)((1−1/4D)N) ≤ 2d 2d e−d ≤ 2d .
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This gives a contradiction, and it follows that Var(kN ) < 2(8+12D).
Now spectral profile will be useful. For large values of r, apply the

inequality ∀x, α ∈ [0, 1] : (1−x)α ≤ 1−αx to Theorem 5.12 to obtain

ΦKK∗(r) ≥ 1− r1/D = 1−
(

1
2

)log2(1/r)/D

≥
{

1/2 if r ≤ 1/2D

log2(1/r)
2D if r > 1/2D .

(5.6)

Recall that by Cheeger’s Inequality ΛKK∗(r) ≥ 1
2 Φ2

KK∗(r), and by The-
orem 5.7, λKK∗ ≥ 1

4 Φ̃2
KK∗ .

Let σ/π = kN in Theorem 2.10, to obtain

τ2(ε) ≤ N +

⌈∫ 1/2

4/Var(kN )

2 dr
rΛKK∗(r)

+
2

λKK∗
log

2
√

2
ε

⌉

≤ N +

⌈∫ 1/2

4/Var(kN )

4 dr
rΦ2

KK∗(r)
+

8
Φ̃2

KK∗
log

2
√

2
ε

⌉

≤ N +

⌈∫ 1/2D

4/2(8+12D)

16 dr
r

+
∫ 1/2

1/2D

16D2 dr

r (log2(1/r))2
+ 8D2 log

2
√

2
ε

⌉

= N +
⌈
4(log 2)

(
7D2 + 40D + 24) + 8D2 log(1/ε)

)⌉
.

Substitute back in D = d14/C, then recall that each of these shuffles
was in fact d steps of a “regular” Thorp shuffle, resulting in a mixing
time bound d times larger, and hence the O(d29) bound for the Thorp
shuffle.

5.4.3 Evolving Sets

The approach to this section will be roughly the same as that in the
spectral case, but with Ên

√
1−π(Sn)

π(Sn) and 1 − C√
z(1−z)

(r) in place of

Var(kn) and ΛKK∗(r) respectively. The proof of a bound for the Thorp
shuffle will be similar to that of Theorem 5.13. First, a careful analysis
will be used to show that Ên

√
1−π(Sn)

π(Sn) drops from doubly exponential
to singly exponential after some N steps. Then the congestion profile
bound on mixing time will be used for the remainder.
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Theorem 5.14. The mixing time of the Thorp shuffle is

τ2(ε) ≤ 8C−2 d29 (2 + log(1/ε)) ,

where C is the constant of Theorem 5.12.

Proof. As before, we reduce clutter by defining D = d14/C.
To show exponential contraction of distance an argument simi-

lar to the spectral case can be given, with Lemma 3.11 improved to
E(Zg(Z)) ≥ (1− δ)EZ g(δEZ), just as Lemma 2.9 was sharpened pre-
viously. However, a somewhat sharper bound can be obtained by using
convexity. A few preliminaries are required.

Suppose h(x) ≥ xC√
z(1−z)

(
1

1+x2

)
and f(x) =

√
1−x

x . By Equation

(3.4), if x − h(x) is convex then Ên+1f(π(Sn+1)) ≤ h(Ênf(π(Sn))). If
h is increasing then by induction Ênf(π(Sn)) ≤ hn(f(π(S0))), and if,
moreover, g ≥ h for some function g then

Ênf(π(Sn)) ≤ hn(f(π(S0))) ≤ gn(f(π(S0))) . (5.7)

It remains to verify these conditions and determine gn(f(π(S0))).
By our earlier work

C√
z(1−z)

(r) ≤ 4

√
1− Φ2

KK∗(r) ≤ 4

√
1− (1− r1/D)2 .

Let h(x) = x 4

√
1−

(
1− 1

(1+x2)1/D

)2
≥ xC√

z(1−z)

(
1

1+x2

)
and g(x) =

4
√

2x1−1/2D. Then x − h(x) is convex, h is increasing, and g ≥ h, so
Equation (5.7) applies. It follows that if ÊNf(π(SN )) > 2D at N =
4Dd then for all ∀k ≤ N : gk(f(π(S0))) > ÊNf(π(SN )) > 2D. Since
f(π(S0)) < 1/

√
π(S0) and g(x) ≤ x1−1/4D when x ≥ 2D then

ÊNf(π(SN )) ≤ gN (f(π(S0))) <

(
1√
π(S0)

)(1−1/4D)4Dd

≤ 2d2d e−d
< 2d ≤ 2D ,

a contradiction. It follows that ÊNf(π(SN )) ≤ 2D at N = 4dD.
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The proof of Theorem 3.10 still holds when π∗ is replaced by
f−1(ÊNf(π(SN ))) = 1

1+(ÊNf(π(SN )))2 . Hence,

τ2(ε) ≤ N +

⌈∫ f−1(ε)

f−1(ÊNf(π(SN )))

dr

2r(1− r)(1− C√
z(1−z)

(r))

⌉

≤ N +




∫ 1/2

1

1+(Êf(π(SN )))2

2 dr
r(1− r)Φ2

KK∗(r)
+

∫ 1
1+ε2

1/2

4 dr
r(1− r)Φ̃2

KK∗




≤ N

+

⌈∫ 1

2D

1

1+22D

8 dr
r(1− r)

+
∫ 1/2

1

2D

8D2 dr

r(1− r)(log2(1/r))2
+

∫ 1
1+ε2

1/2

4D2 dr

r(1− r)

⌉

≤ N +
⌈
16(log 2)D2 + 4D2 log(1/ε2)

⌉
,

where the second inequality applied Equation (3.9), the third inequality
applied the conductance bounds of Equation (5.6), and in the fourth
inequality the second integral was evaluated by first approximating
1− r ≥ 1/2.

Substitute back in D = d14/C, then recall that each of these shuffles
was in fact d steps of a “regular” Thorp shuffle, resulting in a mixing
time bound d times larger, and hence the O(d29) bound for the Thorp
shuffle.

5.4.4 Bounding the `2 norm of functions

The mixing time argument given above relied crucially on Lemma 12 of
Morris [64]. The proof of this result and the preliminary tools leading
to it are quite involved, and so it would be beyond the scope of this
survey to prove the lemma here. Instead, we merely sketch the key
principles behind this proof.

Recall the model of the d-step Thorp shuffle given by flipping along
the d-coordinate directions of a d-dimensional cube. If only the first k
coordinate directions are flipped this gives a pseudo k-step shuffle, and
opens the possibility of an inductive proof on k = 1 . . . d. Note that this
is not the same as k Thorp shuffles on the original 2d-card deck, but is
rather k Thorp shuffles on 2d−k independent 2k-card subdecks.
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We now give a very rough sketch of Morris’ proof; all references
are to version [64]. Recall that the goal is to show, for every set A of
card orderings, that ‖K∗1A‖2

2 is extremely small, where K denotes d
consecutive Thorp shuffles. As we saw, ‖K∗1A‖2

2 = QKK∗(A,A) and so
intuitively this will be similar to showing that, given a set A of card
orderings, there is a very small chance of a KK∗ shuffle taking an order-
ing in A to another ordering in A. When we refer to the “k-coordinate
shuffle” we will mean a shuffle in which the first k-coordinates are shuf-
fled, followed by a time-reversed k-coordinate shuffle (i.e. KK∗, called
the “zigzag shuffle” by Morris).

• Assume the k−1 coordinate shuffle has been studied already.
Adding a shuffle in the kth coordinate will merge pairs of
2k−1-card groups into common 2k-card groups. In each pair
refer to the two 2k−1-card groups as the “top” and “bottom”.
In the best case scenario the induction will require only that
the k− 1 coordinate shuffle sufficiently mixed the “top” and
“bottom”. When this doesn’t work then it is necessary to
understand the degree to which the kth step of the shuffle
randomizes the choice of cards in the lower half space (i.e.
how much it mixes cards from the “top” into locations in the
“bottom”).

• For this use Corollary 5, which shows that after O(d(k−1)4)
k-coordinate shuffles the 2k−1 cards in the “bottom” of each
of the 2d−k sub-decks are roughly uniformly chosen from the
2k cards available.

• To show this, let Λ′ denote a set of positions in a deck. By
Lemma 4, after O(d4) full d-coordinate shuffles any of the
C(2d, |Λ′|) subsets of |Λ′| cards are about equally likely to
end at Λ′. In particular, a k-coordinate shuffle is a full shuffle
for each 2k-card sub-deck, so O(k4) such shuffles randomize
the selection of cards ending in the “bottom”.

• This requires equation (26), that if O(d4) full d-step shuffles
sends unordered set S of cards to some unordered set S′ of
positions (with |S| = |S′|), then each x ∈ S is about equally
likely to end at any fixed y ∈ S′.
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• For this use equation (17), which uses the “Chameleon
process” to show that if O(d3) full d-step shuffles have dis-
tribute the first b cards (for any b) fairly widely in the deck
of 2d cards, then card b+1 is also well mixed up in the deck.
Induction on b shows there to be a good chance the initial
subsets are at random positions.

Heuristically speaking, the proof is building up from the most local
property to the most global – starting by showing that if the first b
cards have moved around the deck a lot then the next card probably
has too, then showing that subsets of cards do in fact move around the
space fairly well, and eventually showing a property of averages over
the whole space with Lemma 12.
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Miscellaneous

6.1 The Fastest Mixing Markov Process Problem

Throughout this section, we will assume that the Markov kernel P
under consideration is reversible. Consider the general problem of de-
signing a fast Markov chain with a prescribed stationary measure π
on the finite state space M . Trivially one can always consider the ker-
nel P (x, y) = π(y), for each x, y ∈ Ω which reaches stationarity in
one step! In situations where Ω is of large size, such an answer is not
satisfactory, since the above mentioned P may not be practical (imple-
mentable). To make the above problem more interesting and nontrivial,
following the work of [10, 11, 77, 66], let us now further impose that
we are given an arbitrary graph G = (V,E), with π a probability mea-
sure on V as before, and demand that any kernel P has to be zero
on the pairs which are not adjacent in G (i.e., not connected by an
edge from E) and such that π is the stationary measure for P . Now
given this setting, the main issue is to come up with the fastest such
P , in the sense that such a P has as large a spectral gap as possible.
Let λ∗(G, π) denote the spectral gap of such a fastest chain. When π

is uniform over the state space, we denote this by λ∗(G). Boyd et al.
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also investigated [77] the closely related problem of designing a fastest
Markov process (meaning, a continuous-time Markov chain) under the
above stipulation. Since the rates of a continuous-time Markov process
can be arbitrary (up to scaling), a particular normalization such as the
sum of all non-diagonal entries being at most 1, was imposed by [77]
to make the problem meaningful in continuous-time. Perhaps it would
have been more common to have made the assumption that the sum
in each row (barring the non-diagonal entry) be at most 1, however
the above assumption seems rather interesting and powerful (see the
remark at the end of this section).

One of the main conclusions of [10, 11, 77] is that the problem of
determining the spectral gap of the fastest chain or process can be
modeled as a convex optimization problem, and that it can be solved
in polynomial time in the size (|V (G)|) of the chain. These papers also
provide examples showing that some of the natural chains, such as the
Metropolis walk, or the maximum degree based simple random walk,
can be worse than the optimal gap (λ∗(G)) by an arbitrary multiplica-
tive factor – in some instances off by a factor as high as |V (G)|.

For the problem of designing the fastest (continuous-time) Markov
process, tight bounds on the optimal gap have been given in the recent
work of Naor et al. [66]. In particular, using a dual characterization in
[77], they provide tight bounds on the spectral gap λ∗(G) in terms of
a maximal variance quantity, introduced in [2], as the spread constant
of G:

Let L(G) denote the set of Lipschitz functions (with respect to the
graph distance) on G with constant 1. Equivalently,

L(G) = {f : V (G) → R : {i, j} ∈ E(G) → |f(i)− f(j)| ≤ 1}.

The spread constant of G with respect to π is defined to be

cvar(G, π) = max
f∈L(G)

Varπf. (6.1)

It is easily seen that the spread constant offers an upper bound
on the inverse spectral gap of any P with support on the edges of G.
Indeed
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λ(P ) = inf
f :Varπf 6=0

E(f, f)
Varπf

≤ inf
f :Varπf 6=0

f :∈L(G)

E(f, f)
Varπf

≤ inf
f :Varπf 6=0

f :∈L(G)

1
2Varπf

=
1

2cvar(G, π)
. (6.2)

On the other hand, the work of [66] shows that for the fastest
continuous-time P , the above inequality can be off by no more than
a factor of logn , where n is the number of vertices of G (i.e., the num-
ber of states of P ). The precise formulation is as follows. Let cvar(G)
denote cvar(G, π) when π is uniform over the vertex set.

Theorem 6.1. Given an undirected graph G = (V,E) with |V | = n,
let P be a chain with the largest spectral gap λ∗(G) over all reversible
continuous-time random walks with support contained in E, and with
uniform stationary distribution. Then

2cvar(G) ≤ 1
λ∗(G)

= O(cvar(G) logn). (6.3)

Moreover, there exist arbitrarily large n-vertex graphs G for which

1
λ∗(G)cvar(G)

= Ω
(

logn
log log n

)
. (6.4)

We recall here the proof of (6.3), which follows fairly easily using some
known results; we refer the reader to [66] for the proof of (6.4), for
results on the (complexity of) approximation of spread constant, and
further related material.

Proof. [Proof of Theorem 6.1] The lower bound is immediate from the
observation made above, leading to (6.2). For the upper bound, let
π(i) = 1/n for all i ∈ V , and given X ∈ Rn let ‖X‖ =

(∑n
k=1X(k)2

)1/2

denote the Euclidean length of vector X.
Sun et al. [77] show that finding λ∗ is equivalent (by duality) to

solving the following n-dimensional maximal variance problem (see eqn.
(12) in Section 6 of [77]). In fact λ∗ is equal to the inverse of the
optimum value in the following problem.
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Maximize
∑

i

π(i)‖Xi‖2

subject to ‖Xi −Xj‖ ≤ 1, {i, j} ∈ E, and
∑

i

π(i)Xi = ~0.

The above maximization is over Xi ∈ Rn, for i = 1, 2, . . . , n. Since∑
i π(i)Xi = 0, we may rewrite the above problem:

Maximize
1
2

∑

i,j

‖Xi −Xj‖2π(i)π(j)

subject to ‖Xi −Xj‖ ≤ 1, {i, j} ∈ E, and
∑

i

π(i)Xi = ~0.

Note that when the above problem is formulated withXi ∈ R, it reduces
to solving for the spread constant. On the other hand, the now-famous
lemma of Johnson and Lindenstrauss [44] guarantees that there exists
a map f : Rn → Rd with d = O(logn), and

1
2
‖Xi −Xj‖ ≤ ‖f(Xi)− f(Xj)‖ ≤ ‖Xi −Xj‖ for all i, j ∈ V. (6.5)

More over, such an f can be found in polynomial time in n using a ran-
domized algorithm. Thus such a map, while maintaining the constraint
that ‖f(Xi)− f(Xj)‖ ≤ 1, for {i, j} ∈ E, gives solution vectors in Rd,
with no worse than a factor of 4 loss in the optimal variance, as

1
4

∑

i,j

‖Xi −Xj‖2π(i)π(j) ≤
∑

i,j

‖f(Xi)− f(Xj)‖2π(i)π(j).

The other constraint about the mean of the configuration being zero
should not matter, since

∑
i π(i)Xi (or

∑
i π(i)f(Xi)) can be subtracted

from any solution without affecting ‖Xi−Xj‖. Finally, to complete the
first part of the theorem, observe that

1
4d

1
λ∗

=
1
8d

∑

i,j

‖Xi −Xj‖2π(i)π(j)

≤ 1
2d

∑

i,j

d∑

k=1

|f(Xi)(k)− f(Xj)(k)|2π(i)π(j)

≤ max
k

1
2

∑

i,j

|f(Xi)(k)− f(Xj)(k)|2π(i)π(j) ≤ cvar(G),
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the last inequality following from the fact that f automatically satisfies
the Lipschitz condition in each coordinate as 1 ≥ ‖f(Xi) − f(Xj)‖ ≥
|f(Xi)(k)− f(Xj)(k)| for all k.

As noted in [66], the theorem generalizes to the case of general
π and nonnegative real weights dij ≥ 0 on edges {i, j}. (The crucial
Johnson-Lindenstrauss lemma used above is completely general, for
any n-point metric space.) For S ⊂ V (G), and i ∈ V (G), let d̄(i, S) =
minj∈S dG(i, j), where dG(·) denotes the graph distance. Now let S be
any set with π(S) ≥ 1/2. Then Theorem 3.15 of [2] shows that the
spread constant is at least the square of the (average) distance of a
random point to such a set S. For every S ⊂ V (G), with π(S) ≥ 1/2,
we have

(Eπd̄(S)) :=
∑

i∈V (G)

d̄(i, S)π(i) ≤
√
cvar(G) .

On the other hand, an upper bound on the spread constant turns out
to be D2(G)/4 (see [2], [66]). Hence the following corollary.

Corollary 6.2. Let G and P be as in Theorem 6.1, and let D(G) be
the diameter of G. Then for d̄(S) defined as above, with S : π(S) ≥ 1/2,

(Eπd̄(S))2 ≤ 1
2λ∗(G)

= O(D2(G) log n). (6.6)

Remark 6.3. The above corollary suggests a way of showing the ex-
istence of rapidly mixing Markov processes on a given graph structure,
without necessarily explicitly constructing them! Given a large set (of
size exponential in n, say), once we construct a graph G with the given
set as its vertex set, and any edge set such that the graph has a small
diameter (of size polynomial in n, say), then λ∗(G) of such a graph is
automatically bounded from below by a polynomial in n; implying that
there exists a fast Markov process which samples (uniformly, say) from
the given large set. Of course, it might be challenging and in general
impractical a task to actually find such a process explicitly! In light of
several slow mixing results for the standard Glauber-type dynamics for
various statistical physics models, the above result nevertheless seems
puzzling. As noted earlier in the section, the key to the mystery might
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be that we were implicitly providing the continuous-time chain with
more power – by not requiring the rates in each row to sum to 1, but
only the rates in the entire matrix to sum to 1, barring the diagonal
entries in each sum.

6.2 Alternative description of the spectral gap, and the en-
tropy constant

While the following characterization of the spectral gap apparently
dates back to Bochner [6] and Lichnérowicz [50], it does not seem to
be well-known in the Markov chain mixing time community. For recent
applications and further references, see [9].

Proposition 6.4.

λ = inf
f

E(−Lf, f)
E(f, f)

. (6.7)

Proof. Let

µ := inf
f

E(−Lf, f)
E(f, f)

. (6.8)

The fact that λ ≤ µ follows by simply using Cauchy-Schwartz. In-
deed, without loss assuming Eπf = 0, we have

E(f, f) = E(f(−Lf))) ≤ (Var(f))1/2(E(−Lf)2))1/2

≤ 1√
λ

(E(f, f))1/2(E(−Lf)2))1/2

=
1√
λ

(E(f, f))1/2(E(−Lf, f))1/2,

implying that λ ≤ µ. To prove the other direction, observe that, as in
the argument of Lemma 1.4,

d

dt
Var(Htf) = −2E(Htf,Htf),

d

dt
E(Htf,Htf) = −2E(Htf,−LHtf).

Also note that as t→∞, E(Htf,Htf) → 0, since Htf → Eπf . Thus,

E(f, f) = −
∫ ∞

0

d

dt
E(Htf,Htf) dt = 2

∫ ∞

0
E(Htf,−LHtf) dt
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= 2
∫ ∞

0
E(−L∗Htf,Htf) dt ≥ 2µP∗

∫ ∞

0
E(Htf,Htf) dt

= −µP∗

∫ ∞

0

d

dt
Var(Htf) dt = µP∗ Varf ,

implying that µP∗ ≤ λP.
Combining these two cases, and the relation λP = λP∗ , gives λP ≤

µP ≤ λP∗ = λP.

While it is natural to ask for the entropy analog, it seems to extend
only in one direction. (see Bakry-Emery [3]). We omit the analogous
proof, which involves the second derivative of entropy:

ρ0 ≥ e0 := inf
f>0

u(f)
E(f, log f)

, u(f) := E(−Lf, log f) + E(f, (−Lf)/f) .

(6.9)
In [14], the above formulation was used in estimating the entropy

constant of the Bernoulli-Laplace model on r ≥ 1 particles. Their proof
showing e0 ≥ n (independently of r) for the B-L model, makes effective
use of the commutators of the gradient operators, and yields the best
known estimate – in terms of the absolute constant in front of n. It
remains elusive, as to how to employ their technique to estimate the
entropy constant of the closely-related random transposition model.
However, such a computation (in fact achieving the optimal constant)
for the spectral gap of the random transposition model has been carried
out, inter alia, in [9].

6.3 Perturbation Bounds

One of the important results in the stability theory for Markov chains
was the discovery of a connection between the stability of a chain and
its speed of convergence to equilibrium (see [57] and references therein).
Such a connection is quantitative, in the sense that we can always get
a sensitivity bound for Markov chains, once we have a convergence
bound (say, in total variation), and the sharpness of the convergence
will in turn determine the accuracy of the sensitivity bound. As an
illustration, we cite the following theorem of A.Yu. Mitrophanov.
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Consider two continuous-time Markov chains, X(t) and X̃(t), t ≥
0, with finite state space Ω = {1, 2, . . . , N}, N ≥ 1, and generators
Q = (qij) and Q̃ = (q̃ij), respectively. Recall that a row stochastic
matrix P may be used to get a continuous-time Markov chain, by letting
the generator be Q = P − I, where I is the identity matrix. Then
pT
0Ht = pT

0 e
Qt gives the distribution of the chain at time t ≥ 0, when

started in p0 at time 0. (Here we are viewing p0 as a column vector.)
In the following, for a vector p, let ‖p‖ denote the l1 norm, and for a

matrix A, let ‖A‖ denote the subordinate norm (namely, the maximum
absolute row sum of A). Assume that X(t) has a unique stationary
distribution π(). Then the following theorem is proved in [57]. Let p0

and p̃0 denote the distribution of X(0) and X̃(0), respectively.

Theorem 6.5. If b > 0, c > 2 are constants such that for all x, y,

‖Ht(x, ·)−Ht(y, ·)‖ ≤ ce−bt, t ≥ 0, (6.10)

then for z(t) = pT
0Ht − p̃T

0 H̃t and E = Q− Q̃,

‖z(t)‖ <





‖z(0)‖+ t‖E‖ if 0 < t ≤ log(c/2)
b ,

ce−bt‖z(0)‖/2
+1

b (log(c/2) + 1− ce−bt/2)‖E‖ if t ≥ log(c/2)
b .

Moreover, if π̃ is a stationary distribution of X̃(t), then

‖π̃ − π‖ ≤ b−1(log(c/2) + 1)‖E‖.

An important feature of such bounds is the logarithmic dependence of
the right hand side on c. A significant role in the proof of the above
theorem is played by d̄(t), called the ergodicity coefficient of Ht, which
was defined in Chapter 4. Further extensions of results of this type
for discrete-time Markov chains on general state spaces and for hidden
Markov models are discussed in [58] and [59], respectively.
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Open Problems

We conclude with some open problems.

1. Is there a useful comparison argument for the entropy constant?

2. Provide lower bounds on the entropy constant in terms of inverse τ?
Based on several examples, we ask if the following could always be

true? If so, it would strengthen the classical inverse spectral gap lower
bound on the total variation mixing time. Is there a universal constant
c > 0 such that for every irreducible Markov chain P, we have

c

ρ0
≤ τTV(1/e) ?

3. A functional analog of (5.3) is that for all f : Ω → R,

EKK∗(f, f) = ‖f‖2
2 − ‖K∗f‖2

2.

If this, in conjunction with Lemma 12 of [64] (or more likely, a strength-
ened version of that lemma), could be used to directly bound ΛKK∗(r)
from below, then the final bound on the mixing time of the Thorp shuf-
fle could be substantially smaller – it should drop to d15 or so, since we
would be avoiding the use of the generalized Cheeger inequality (5.2).
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Bounding the entropy decay of the Thorp shuffle, using either the en-
tropy constant or the log-Sobolev constant, is another way to improve
upon the currently weak estimates on the mixing time of this shuffle.

4. Can the spectral profile be estimated for the lamplighter problem (see
[68]) on a discrete cube or more generally on an expander graph? This
would tighten the estimates on the L2 mixing time for the lamplighter
problem.

5. For simple random walks on n-vertex graphs, how small can the
log-Sobolev and the entropy constants be? The spectral gap is lower
bounded by Ω(1/n3) by an old result of Landau and Odlyzko [47]. The
bound is tight, since a barbell graph achieves such a bound.

6. For the Bernoulli Process of Example 2.7 and 2.13 can a better
lower bound on the spectral profile Λ(r) be achieved when r is small?
As discussed, this might lead to an easier proof of the mixing time of
the exclusion process on Zd/LZd.
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Appendix

Our main focus has been on bounds for L2 distance. Our bounds on
mixing times in L2 and relative entropy also yield bounds on the total
variation mixing time using the following well-known inequality relating
probability measures ν and µ.

‖ν − µ‖TV =
1
2

∥∥∥∥
ν

µ
− 1

∥∥∥∥
1,µ

≤ 1
2

∥∥∥∥
ν

µ
− 1

∥∥∥∥
2,µ

. (7.1)

Further assuming that ν is absolutely continuous with respect to µ,
the so-called Pinsker inequality (see Lemma 12.6.1 in [20] for a proof),
asserts that:

‖ν − µ‖2
TV ≤

1
2
D(ν‖µ) (7.2)

Finally the general inequality (Eµf)Entµ(f) ≤ Varµ(f), valid for all
measurable functions on an arbitrary probability space (since log f

Eµf ≤
f
Eµf − 1), when applied to f = ν/µ implies that,

D(ν‖µ) ≤
∥∥∥∥
ν

µ
− 1

∥∥∥∥
2

2,µ

. (7.3)

In a sense the L∞, or relative pointwise distance, is the strongest of
all distances. Our L2 bounds also induce L∞ bounds. Observe that if
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t = t1 + t2 then∣∣∣∣
Ht(x, y)− π(y)

π(y)

∣∣∣∣ =
∣∣∣∣
∑

z (Ht1(x, z)− π(z)) (Ht2(z, y)− π(y))
π(y)

∣∣∣∣

=

∣∣∣∣∣
∑

z

π(z)
(
Ht1(x, z)
π(z)

− 1
)(

H∗
t2(y, z)
π(z)

− 1
)∣∣∣∣∣

≤ ∥∥hx
t1 − 1

∥∥
2

∥∥h∗yt2
− 1

∥∥
2

(7.4)

where the inequality follows from Cauchy-Schwartz. Several bounds on
L∞ mixing then follow immediately, including

τ2(ε) ≤ τ∞(ε) ≤ τ2

(
ε

√
π∗

1− π∗

)

and
τ2(ε) ≤ τ∞(ε) ≤ τP

2 (
√
ε) + τP∗

2 (
√
ε) .

The first of these two is somewhat unappealing because the as-
ymptotic portion of τ2(ε) is of the form λ−1 log(1/ε), and so taking
τ2

(
ε
√

π∗
1−π∗

)
adds an extra factor of λ−1 log(1/π∗) to the τ2(ε) bound,

potentially large relative to spectral profile bounds. The second bound
unfortunately requires study of both P and P∗. However, if P is re-
versible then this last bound becomes

τ2(ε) ≤ τ∞(ε) ≤ 2τ2(
√
ε) . (7.5)

More generally, most bounds in this paper were the same for P and P∗.
For instance, (7.5) holds for the spectral profile bounds on L2 mixing
in terms of Λ(r). In particular, the Dirichlet form satisfies

EP(f, f) = EP∗(f, f)

and so λ(P) = λ(P∗), ΛP(r) = ΛP∗(r), ρ(P) = ρ(P∗) and ΦP(r) =
ΦP∗(r) (as Q(A,Ac) = E(1A, 1A)).

It is not as clear how the f -congestion bounds behave for P∗. How-
ever, if π is uniform then

Ψ(A) = Ψ(Ac) = min
π(B)=π(A)

Q(Ac, B)

= min
π(B)=π(A)

QP∗(B,Ac) ≥ min
π(B)=π(A)

ΨP∗(B)

and so φ̃(r) ≥ φ̃P∗(r). The converse follows similarly, so φ̃P(r) = φ̃P∗(r)
when π is uniform, and (7.5) holds for modified-conductance bounds.


