
Approximating Min-sum Set Cover ∗

Uriel Feige † László Lovász ‡ Prasad Tetali §

Proc. version in Approx’02
Jour. version to appear in Algorithmica

Abstract

The input to the min sum set cover problem is a collection of n sets that jointly
cover m elements. The output is a linear order on the sets, namely, in every time step
from 1 to n exactly one set is chosen. For every element, this induces a first time step
by which it is covered. The objective is to find a linear arrangement of the sets that
minimizes the sum of these first time steps over all elements.

We show that a greedy algorithm approximates min sum set cover within a ratio
of 4. This result was implicit in work of Bar-Noy, Bellare, Halldorsson, Shachnai and
Tamir (1998) on chromatic sums, but we present a simpler proof. We also show that
for every ε > 0, achieving an approximation ratio of 4 − ε is NP-hard. For the min
sum vertex cover version of the problem (which comes up as a heuristic for speeding up
solvers of semidefinite programs) we show that it can be approximated within a ratio
of 2, and is NP-hard to approximate within some constant ρ > 1.

∗a preliminary version of this paper appeared in the conference proceedings of APPROX 2002.
†Department of Computer Science and Applied Mathematics, the Weizmann Institute, Rehovot 76100,

Israel. feige@wisdom.weizmann.ac.il
‡Microsoft Research, One Microsoft Way, Redmond, WA 98052. lovasz@microsoft.com
§School of Mathematics and College of Computing, Georgia Institute of Technology, Atlanta, GA 30332-

0160; research in part supported by the NSF grant DMS-0100298. tetali@math.gatech.edu

1 Introduction

The min sum set cover (mssc) problem is a problem related both to the classical min set
cover problem, and to the linear arrangement problems. Problems related to set cover are
often expressed in terms of sets that cover points. Equivalently, they can be expressed as
problem on hypergraphs, with vertices that cover hyperedges. We shall use the latter repre-
sentation, which is also the more common representation for linear arrangement problems.

Notation. H(V,E) denotes a hypergraph H with vertex set V and hyperedge set E,
where each hyperedge is a set of vertices. A hypergraph is r-uniform if every hyperedge
contains exactly r vertices. A 2-uniform hypergraph is simply a graph, and in this case we
use the notation G(V,E) and use the term edge rather than hyperedge. A hypergraph is
d-regular if every vertex has degree d, namely, is contained in exactly d hyperedges.

Min sum set cover (mssc). For hypergraph H(V,E), a linear ordering is a bijection
f from V to {1, . . . , |V |}. For a hyperedge e and linear ordering f , we define f(e) as the
minimum of f(v) over all v ∈ e. The goal is to find a linear ordering that minimizes

∑
e f(e).

We note that minimizing the sum of f(e) is equivalent to minimizing the average of
f(e). So another way of viewing mssc is as that of seeking a linear arrangement of the
vertices of a hypergraph that minimizes the average cover time for the hyperedges.

An important special case of mssc is the following.
Min sum vertex cover (msvc). The hypergraph is a graph G(V,E). Hence one

seeks a linear arrangement of the vertices of a graph that minimizes the average cover
time of the edges. Linear arrangement problems on graphs often come up as heuristics for
speeding up matrix computation. And indeed, msvc came up in ([4], Section 4) in the
context of designing efficient algorithms for solving semidefinite programs, and was one of
the motivations for our work.

Another problem that in a sense is a special case of mssc is the following.
Min sum coloring. The input to this problem is a graph. The output is linear ordering

of its independent sets, or equivalently, a legal coloring of its vertices by natural numbers.
The objective is to find such a coloring that minimizes the sum of color-numbers assigned
to vertices. Given an input graph G′(V ′, E′), one can cast the min sum coloring problem
as an mssc problem as follows. The vertices of the hypergraph H are the independent sets
of G′, and the hyperedges of the hypergraph H are the vertices V ′. Note however that the
size of the hypergraph H would typically be exponential in the size of the graph G′. Min
sum coloring has been extensively studied in the past and many of the results carry over to
mssc . We shall later mention the results of [2, 3].

All the above problems are NP-hard, and we shall study their approximability.

1.1 Related work

We are not aware of previous work on the min sum set cover problem. Regarding min sum
vertex cover, this problem was suggested to us by the authors of [4]. They use a greedy
algorithm that repeatedly takes the vertex of largest degree in the remaining graph as a
heuristic for msvc . The problem msvc itself is used as a heuristic for speeding up a solver
for semidefinite programs.

Min sum coloring was studied extensively. It models the issue of minimizing average
response time in distributed resource allocation problems. The vertices of the underlying

1

graph (the so-called conflict graph) represent tasks that need to be performed, and an edge
between two vertices represents a conflict – the corresponding tasks cannot be scheduled
together. Part of the difficulty of the min sum coloring problem is that of identifying the
independent sets in the conflict graph, which makes it more difficult than mssc (where the
underlying hypergraph is given explicitly). In [2] it is observed that min sum coloring is hard
to approximate within a ratio of n1−ε for every ε > 0, due to the hardness of distinguishing
between graphs that have no independent sets of size nε and graphs that have chromatic
number below nε (which is shown in [8]). This hardness result does not apply to mssc .

In [2] it is shown that the greedy algorithm that iteratively picks (and removes) the
largest independent set in the graph approximates min sum coloring within a factor 4. This
algorithm can be applied for certain families of graphs (such as perfect graphs), and also
in the case of mssc (where of course we iteratively pick the vertex with largest degree in
the remaining hypergraph). We observe that the proof in [2] of the factor 4 approximation
applies also to mssc (and not just to the special case of min sum coloring). Hence mssc is
approximable within a factor of 4.

In [3] examples are shown where the greedy algorithm does not approximate min sum
coloring within ratios better than 4, showing the optimality of the analysis in [2]. We
observe that the proof given there also applies to the use of the greedy algorithm for min
sum vertex cover (which is the algorithm used in [4]).

There are close connections between mssc and set-cover. For problems related to set
cover, tight approximation thresholds (up to low order terms) are often known. Examples
include ln n for min set cover and (1 − 1/e) for max k-cover [6], lnn for the Domatic
Number [7], roughly

√
n for maximum disjoint packing of sets (a result published in the

context of auction design). This is some indication that one may be able to find a tight
approximation threshold for mssc . However, let us point out a major difference between
mssc and other problems related to set cover. Given an instance of mssc which is composed
of two disjoint instances, the optimal solution is not necessarily a combination of the optimal
solutions to each of the sub-instances. (For example, consider a graph G1 on 9 vertices
u, v1, w1, . . . , v4, w4 in which vertex u is connected as a star to vertices v1, . . . , v4, and for
every 1 ≤ i ≤ 4, vi is connected to wi. The optimal solution to msvc first uses u to cover 4
edges, and then covers the remaining edges one by one. However, if we consider a graph
G that is the disjoint union of G1 and G2, where G2 is a graph consisting of three isolated
edges, the optimal solution for msvc becomes to first take v1, . . . , v4, and then cover the
three edges of G2 one by one.) This makes it more difficult to design and analyze algorithms
for mssc . In particular, we do not even know if there is a polynomial time algorithm for
min sum vertex cover when the underlying graph is a tree (whereas min vertex cover is
polynomial time solvable on trees.) As we shall later see, the hardest instances for mssc (in
terms of approximation ratio) have different properties than the hardest instances for min
set cover. A major difference (already manifested in [3]) is that they are not regular.

1.2 New results

The main result regarding the approximation of min sum set cover is the following.

Theorem 1 1. The greedy algorithm approximates min sum set cover within a ratio no
worse than 4.

2

2. For every ε > 0, it is NP-hard to approximate min sum set cover within a ratio of
4 − ε.

As noted earlier, the first part of Theorem 1 was essentially already proved in [2]. In
[10] we presented a simpler alternative proof (inspired by the primal-dual approach for
approximation algorithms based on linear programming). The proof presented here is a
further simplification of the proof from [10]. We also show that this proof in fact works for
a related version of the mssc problem. This version is called the f -mssc problem and is
considered after the proof of Theorem 4 in Section 2.

The second part of Theorem 1 is proved by modifying a reduction of [6], and combining
it with ideas from [3].

For min sum vertex cover, we observe that the results of [3] imply that the greedy
algorithm does not approximate it within a ratio better than 4. We then show:

Theorem 2 1. An approximation algorithm based on linear programming approximates
min sum vertex cover within a ratio of 2.

2. There exists a constant ρ > 1 such that min sum vertex cover is NP-hard to approxi-
mate within a ratio better than ρ.

The first part of Theorem 2 is proved by using a linear programming relaxation for
msvc , and rounding it using a randomized rounding technique. We conjecture that the
integrality ratio of the linear programming is in fact better than 2, and that our approx-
imation ratio for msvc can be improved upon by using a more sophisticated rounding
technique.

Our last set of results relate to the special case of mssc instances on r-uniform d-regular
instances. We observe that on such instances mssc can be approximated within a ratio of
2r/(r + 1). For large values of r, this approximation ratio tends to 2. For msvc (where
r = 2), this approximation ratio is 4/3. Our main extensions of these results are as follows:

Theorem 3 1. For every ε > 0, there exist r, d such that it is NP-hard to approximate
min sum set cover within a ratio better that 2− ε on r-uniform d-regular hypergraphs.

2. For some ρ < 4/3 and every d, min sum vertex cover can be approximated within a
ratio of ρ on d-regular graphs.

The first part of Theorem 3 is obtained as part of the proof of the second part of
Theorem 1. The proof of the second part of Theorem 3 uses semidefinite programming.

2 The greedy algorithm

Let H(V,E) be a hypergraph on which we wish to approximate min sum set cover. The
greedy algorithm produces a sequence of vertices that cover all hyperedges as follows.

1. Initialize i = 1.

2. While hypergraph H has an edge do

3

(a) Take vi to be a vertex of maximum degree in H.

(b) Update H by removing vi and all hyperedges incident with it from H.

(c) Increment i.

Theorem 4 The greedy algorithm approximates min sum set cover within a ratio no worse
than 4.

Proof: The proof of Theorem 4 is based on a sequence of equalities and inequalities.
Most of them hold for every algorithm for mssc and not just for the greedy algorithm. The
only place where we use properties of the greedy algorithm is towards the end of the proof
of Proposition 6.

Let opt denote the optimal value of the min sum set cover problem. Let greedy denote
the value returned by the greedy algorithm.

For i = 1, 2, . . . , n, let Xi denote the set of edges first covered in step i by the greedy
algorithm. Let Ri = E −⋃i−1

j=1 Xi be the set of edges not covered prior to step i. Note that
greedy =

∑n
i=1 i|Xi|, and equivalently

greedy =
n∑

i=1

|Ri| (1)

Define for every 1 ≤ i ≤ n, Pi = |Ri|
|Xi| . For every edge e ∈ Xi, define its price as pe = Pi.

Now we define price =
∑

e pe.
Summing the price over sets Xi,

price =
∑

i

|Xi|Pi =
∑

i

|Xi| |Ri|
|Xi| =

∑
i

|Ri|. (2)

Proposition 5 For the assignment of prices given above, price = greedy.

Proof: Follows by comparing equations (1) and (2). 2

Proposition 6 For the assignment of prices given above, opt ≥ price/4.

Proof: Consider the following diagram (see Fig. 1 for an illustration) corresponding
to the optimal solution. There are |E| columns, one for every edge, where the edges are
ordered from left to right by the order in which they were covered by the optimal algorithm.
The height of a column is the time step at which it was covered by the optimal algorithm.
Hence we get a histogram with nondecreasing integer heights. The total area beneath this
histogram is exactly opt.

Consider now another diagram corresponding to the greedy solution. Again there are |E|
columns, one for every edge, and in analogy to the previous diagram, the edges are ordered
by the order in which they were covered by the greedy solution. But unlike the previous
diagram, the height of a column is not the time step by which the edge was covered, but
rather its price. Hence the heights need not be integer, and need not be monotone. The
total area of the histogram is exactly price.

We want to show that the area of the second histogram is at most four times that of the
first. To do this we shrink the second histogram by a factor of four as follows. We shrink

4

pe

edges e

greedy

point q′
t

1

2

3

edges e

opt

1

2

3

edges e

point q

shrunk version
of greedy

Figure 1: greedy at most four times opt

5

the height of each column by a factor of two. Hence column heights are pe/2. We shrink
the width of each column by a factor of two. Hence the total width of the second histogram
is now |E|/2. We align the second histogram to the right. Namely, it now occupies the
space that was previously allocated to columns |E|/2 + 1 up to |E| (assume for simplicity
of notation and without loss of generality that |E| is even). Now we claim that this shrunk
version of the second histogram fits completely within the first histogram, implying that
its total area is no more than that of the first histogram. This suffices in order to prove
Proposition 6.

Consider an arbitrary point q′ in the original second histogram, let e be the edge to
which it corresponds, and let i denote the time step by which the greedy algorithm covered
edge e. Then the height of q′ is at most pe = |Ri|/|Xi|, and distance of q′ from the right
hand side boundary is at most |Ri|. The shrinking of the second histogram maps q′ to a
new point q. We now show that q must lie within the first histogram. The height of q
(which we denote by h) satisfies h ≤ |Ri|/2|Xi|, and the distance of q from the right hand
side boundary (which we denote by r) satisfies r ≤ |Ri|/2.

For this point q to lie within the first histogram, it suffices to show that by time step h
(rounded down to the nearest integer), at least r edges (rounded up to the nearest integer)
are still uncovered by the optimal algorithm. Consider now only the edges in the set Ri.
No vertex whatsoever can cover more than |Xi| edges from Ri. (This last assertion is the
only place in our proof where we use the property of the greedy algorithm.) Hence in bhc
time steps the optimal could cover at most bhc|Xi| ≤ b|Ri|/2c edges from Ri, leaving at
least d|Ri|/2e ≥ dre edges of Ri uncovered. Hence the point q indeed lies within the first
histogram. 2

Summing up:
opt ≥ price/4 = greedy/4

where the inequalities follow from Propositions 6 and 5 respectively. This completes the
proof of Theorem 4. 2

In [3] it is shown that for every ε > 0, there are instances of min sum set cover for which
the approximation ratio of the greedy algorithm is no better than 4 − ε. (Technically, this
result is stated for min sum coloring, but it applies also to min sum set cover which is a
more general problem.) See also Proposition 8.

• The f -mssc problem.
We observe that the above analysis can in fact be used to guarantee the same factor

of approximation for the following related problem. For 0 < f ≤ 1, let f -mssc be the
mssc problem in which we only charge for the first f |E| edges that are covered, and we
charge nothing for the remaining (1 − f)|E| edges. (This problem is in turn related to a
problem studied in [5]. However, in [5] the remaining (1−f)|E| edges are charged the same
as the f |E|th covered edge.) It is easy to see that for every f the worst case approximation
ratio of greedy on f -mssc cannot be better than that on mssc . (Given an instance of
mssc with m edges, one can reduce it to an instance of f -mssc by adding (1 − f)m/f
auxiliary edges that can only be covered one by one.) The following theorem shows that it
is no worse.

Theorem 7 The greedy algorithm approximates f -mssc within a ratio no worse than 4.

6

Proof: The proof is similar to that of Theorem 4. We shall just point out the differences.

• The price of an edge e covered by set Xi is now

Pi =
|Ri| − (1 − f)|E|

|Xi|
if e is among the first f |E| edges covered by the greedy algorithm, and 0 otherwise.

• The first histogram is 0 beyond column f |E|.
• The shrunk version of the second histogram is aligned with the first histogram so that

(the end of) columns f |E| coincide. Beyond this column, both histograms are 0.

As before, consider a point q in the nonzero part of the shrunk second histogram. The

height of q is at most t =
|Ri| − (1 − f)|E|

2|Xi| . The distance of q from column numbered f |E|

is at most
|Ri| − (1 − f)|E|

2
, and the distance of q from the righthand side boundary is

(1 − f)|E| more, namely, at most
|Ri| + (1 − f)|E|

2
. By time step t, the optimal solution

covers at most t|Xi| =
|Ri| − (1 − f)|E|

2
edges from Ri. Hence the number of uncovered

edges from Ri is at least
|Ri| + (1 − f)|E|

2
. Hence q lies also inside the first histogram.

2

3 Min sum vertex cover

As noted earlier, Bar-Noy et al [3] provide an example showing the tightness of analysis
of factor 4 for the greedy algorithm on min sum coloring. As shown below, the same
construction can be used to describe a bipartite multigraph on which the greedy algorithm
performs no better than a factor 4− ε of the optimal algorithm to solve the msvc problem.
Moreover, this multigraph can be further modified to give a simple graph.

Proposition 8 There exist simple bipartite graphs on which the greedy algorithm performs
no better than a factor 4 − o(1) of the optimal algorithm for the msvc problem.

Proof: First we comment on the construction of the bipartite multigraph, and then we
describe how to convert it into a bipartite simple graph without altering (up to at least the
first order terms) the performance of either the greedy or the optimal.

Since the following construction and the algorithmic analysis involved are very much
based on “the chopping procedure” of Bar-Noy et al (see Sections 2 and 5 of [3]), we keep
the discussion brief. The resulting bipartite multigraph G = (U ∪ V,E) will have the
property that one of the greedy solutions ends up always picking vertices from U in the
order of decreasing degrees to cover all the edges, while it is much better to cover the edges
by always choosing the vertices from V in the order of decreasing degrees. For arbitrary
x > 1, and arbitrary n > 1, a multigraph with the above feature can be constructed with

7

the additional properties that the degree sequence of V is
(

x, x,
x

4
,
x

9
, . . . ,

x

(n − 1)2
,

x

n2

)

and that of U is
(

x,
x

2
,
x

4
,
x

6
,
x

9
, . . . ,

x

(n − 1)2
,

x

(n − 1)n
,

x

n2
, . . . ,

x

n2

)
, where the degree x

n2

appears n + 1 times in U .
To describe the edge structure of G let us start (as in [3]) with a sequence of n + 1

columns. The columns are indexed by the elements of V . Each column will have a stack
of tokens. Column 0 has x tokens, and for 1 ≤ i ≤ n, column i has x

i2 tokens; the number
of tokens in each column is equal to the degree of the corresponding vertex of V . We will
systematically remove tokens from these columns and assign them to the vertices of U .
There are |U | = 3n − 1 steps of removing tokens, and at each step j the tokens that are
removed are assigned to vertex j of U . The number of tokens removed in any step j is
equal to the degree of vertex j of U . The choice of which tokens to remove will ensure
that the number of tokens in the most loaded column at the beginning of any step j is
not larger than the degree of vertex j of U (with equality holding for the first 2n − 1
steps). Specifically, the tokens to be removed in any step j are chosen one by one from
the column currently containing the largest amount of tokens, breaking ties arbitrarily.
Finally, the number nij of tokens picked from a particular column i (corresponding to
vertex i of V) in step j (corresponding to vertex j of U) is precisely the multiplicity of
edges between the corresponding vertices of V and U . As a toy example, the reader may
check that for the parameters x = 36 and n = 3 (giving degree sequence (36, 36, 9, 4) for
V and (36, 18, 9, 6, 4, 4, 4, 4) for U), the number of tokens in the most loaded column at the
beginning of any step j is not larger than the degree of vertex j of U .

For arbitrary x and n, using the general degree sequences for V and U stated above, it
can be verified that choosing the vertices of V in the order of non-increasing degrees yields
that

opt ≤ x +
n∑

i=1

(i + 1)
x

i2
< (Hn + 2.65)x,

minding the notation that
∑n

i=1(1/i) = Hn and the computation that
∑n

i=1(1/i
2) < 1.65).

On the other hand, it can also be checked that the greedy algorithm could indeed choose
vertices of U (also in the order of non-increasing degrees) and sustain a cost of

greedy =
n∑

i=1

2i − 1
i2

x +
n−1∑
i=1

2i
i(i + 1)

x +
n∑

i=1

2n − 1 + i

n2
x

> (4Hn − 1.65)x,

establishing the tightness of factor 4.
To convert the above into a simple graph one may proceed as follows. Let k be the

maximum multiplicity of any edge in the multigraph. The vertex set of the simple graph is
obtained by replacing every vertex v of the multigraph by a cluster of k vertices v0, . . . , vk−1

(regardless of the number of edges connected to v and their multiplicity). The edge set of
the simple graph is as follows. Within a cluster there are no edges. For every edge (u, v)
of the original graph, we put a complete matching between the respective clusters – we
put the k edges (ui, vi) for 0 ≤ i ≤ k − 1. If edge (u, v) had a multiplicity of q, we put q
edge-disjoint matchings between the clusters, namely, for every 0 ≤ i ≤ k − 1 and every
0 ≤ j ≤ q − 1 we put the edge (ui, vi+j) (where i + j is computed modulo k). As q ≤ k,

8

all these edges are distinct, and more over there are no parallel edges. This completes the
description of the simple graph. Note that for each vertex vi in the simple graph, its degree
is equal to the degree (counting multiplicities) of its origin vertex v in the multigraph.

It is not hard to see that the greedy algorithm in the simple graph copies its actions on
the multigraph, systematically covering clusters of U one by one. In analogy to the case
of the multigraph, a better solution covers V cluster by cluster on the simple graph. The
ratio between the value of the solutions remains unchanged up to low order terms. (Observe
that the ratio would have stayed unchanged had we defined the cost of an edge covered at
step t as t − 1/2 rather than as t. Then the cost of each solution simply multiplies by k2.
But as we charge t for an edge covered at step t, this adds a small error term which is
negligible for large enough t. As in the paper of Bar-Noy et al, only a small fraction of the
edges are covered in the first few steps, making the overall deviation from the ratio of 4
negligible.) Hence the greedy algorithm does not approximate min sum vertex cover within
a ratio better than 4. 2

We now show a different algorithm that does approximate min sum vertex cover within
a ratio better than 4.

Consider the following integer program for min sum vertex cover. The indices i and j
run over all vertices. The index t runs over all time steps. The variable xit is an indicator
variable that indicates whether vertex i is chosen at step t. yijt is an indicator variable that
indicates whether edge (i, j) is still uncovered before step t.

Minimize
∑

(i,j)∈E

∑
t yijt subject to

1. xit ∈ {0, 1}. (Integrality constraint.)

2. yijt ∈ {0, 1}. (Integrality constraint.)

3.
∑

i xit ≤ 1. (In every time step, at most one vertex is chosen.)

4. yijt ≥ 1 − ∑
t′<t(xit′ + xjt′). (An edge is uncovered at the beginning of time t unless

one of its endpoints was covered at a previous time step.)

The integer program is relaxed to a linear program by relaxing the integrality constraints
to 0 ≤ xit ≤ 1 and 0 ≤ yijt ≤ 1. Clearly, the linear program (that is solvable in polynomial
time) provides a lower bound for min sum vertex cover.

We propose a procedure for rounding a fractional solution of the linear program. The
procedure is randomized and produces an integer solution with expected value at most twice
that of the linear program. We note that the rounding technique can be made deterministic
using the method of conditional expectation.

The rounding technique works in two stages. The first stage is performed independently
for each vertex. Consider vertex i and the fractional variables xit for t ≥ 1. Let ti be that
value of t′ for which

∑
t<t′ xit < 1/2 and

∑
t≤t′ xit ≥ 1/2. (If no such t′ exists, namely,∑

t xit < 1/2, then let ti = ∞.) Now introduce new variables zit, where zit = 2xit for t < ti,
ziti = 1−∑

t<ti zit, and zit = 0 for t > ti. Note that
∑

t zit ≤ 1 and that zit ≤ 2xit for every
i, t. Now randomly choose at most one value of t, where value t is chosen with probability
zit. For the chosen t, xit is rounded to 1, and for all other values of t, xit is rounded to 0.

9

Let x̄it denote the rounded values obtained by this procedure. It is easy to check that for
every optimal solution to the linear program and for every edge (i, j), either

∑
t xit ≥ 1/2

or
∑

t xjt ≥ 1/2 (or both). In any case, x̄ is a cover.
The outcome of the first stage of the rounding technique satisfies the integrality con-

straints for the x̄it (constraint 1) but may violate constraint 3. In the second stage of the
rounding technique we scan the time steps one by one. For time step t, let st =

∑
i x̄it.

Replace time step t by st time slots. Now allocate the vertices i for which x̄it = 1 to these
time slots in a random order. (The value of t for which x̄it = 1 is shifted to the respective
time slot.) Now constraint 3 is satisfied, because each time slot has exactly one vertex
assigned to it.

Given values for x̄it that satisfy constraints 1 and 3, a 0/1 assignment to the yijt is
derived in a straightforward way (ignoring the assignment originally given to them by the
fractional solution). This completes the description of the rounding procedure.

Lemma 9 The expected value of the rounded solution to the LP is at most twice the frac-
tional value of the LP.

Proof: Consider an arbitrary edge (i, j) and an arbitrary time step t. The contribution
of this to the fractional solution is yijt ≥ 1 − ∑

t′<t(xit′ + xjt′). We will compare this
to the expected constribution of edge (i, j) to time step t in the rounded solution. This
contribution is a product of two factors:

1. The probability that edge (i, j) is not covered before time step t.

2. Conditioned on edge (i, j) not being covered before time step t, the expected number
of time slots within time step t. (Note that we will be comparing time step t of the
fractional solution to the time slots derived from it, rather than to time slot t.) Here
there is subtlety involved. Without the conditioning, the expected number of time
slots into which time step t is transformed (which is the expected value of st) would
be at most 2. However, the conditioning may cause the expectation to increase. To
compensate for this, we shall use the fact that if in the rounded solution edge (i, j)
was first covered in time step t, then the particular time slot within time step t in
which (i, j) was covered is random, and later time slots need not be counted.

For the first factor, we compute the probability that edge (i, j) is not covered by the
rounded solution before time t. This probability is

(1 −
∑
t′<t

zit′)(1 −
∑
t′<t

zjt′) ≤ yijt (3)

where the inequality follows from the relation
∑

t′<t zit′ = min[1, 2
∑

t′<t xit′], and from
constraint 4, namely yijt ≥ 1 − ∑

t′<t xit′ −
∑

t′<t xit′ . (Observe that Equation (3) holds if
the left hand side is 0, because yijt ≥ 0. Hence we may assume that

∑
t′<t xit′ < 1/2 and∑

t′<t xjt′ < 1/2, implying 4(
∑

t′<t xit′)(
∑

t′<t xjt′) <
∑

t′<t xit′ +
∑

t′<t xit′ . If follows that
(1 − 2

∑
t′<t xit′)(1 − 2

∑
t′<t xit′) ≤ 1 − ∑

t′<t xit′ −
∑

t′<t xit′ , implying Equation (3).)
For the second factor (the value of st, and the random order within the time slots) we

introduce two new random variables, r (for “rest”) and w (for “waiting time”). r counts
the number of vertices other than i and j that are rounded to 1 at time step t. w counts the

10

number of relevant time slots within time step t (those at the beginning of which edge (i, j)
is not yet covered). We are interested in the expectation of w. The value of this expectation
can be expressed as a function of r, taking into acount also the random order of time slots
within a time step. We obtain:

• If x̄it = x̄jt = 0, then r = st and w = r.

• If x̄it = 0 and x̄jt = 1, or x̄it = 1 and x̄jt = 0, then r = st − 1 and E[w] = 1 + E[r]/2.

• If x̄it = x̄jt = 1, then r = st − 2 and E[w] = 1 + E[r]/3.

Now E[r] =
∑

k 6=i,j E(x̄kt) =
∑

k 6=i,j zkt ≤ 2
∑

k 6=i,j xkt ≤ 2, due to constraint 3. It follows
that in all cases E[w] ≤ 2. Hence, altogether the contribution of yijt to the rounded solution
is at most 2yijt.

Using the linearity of expectation (over all yijt), the expected value of the rounded
solution is at most twice that of the fractional solution.

2

The analysis of the rounding technique is essentially best possible. This can be verified
by considering a graph composed of disjoint edges. The fractional solution can cover edge
by edge by giving its two endpoints weight 1/2. The rounded solution will then take
both endpoints, paying twice as much. We conjecture that a different rounding techniques
for the same LP can give an approximation ratio better than 2. Moreover, we suspect
that using semidefinite programming rather than linear programming can further improve
the approximation ratio. This we can show for the special case of regular graphs. The
integrality ratio of the LP is 4/3 (on a clique), whereas semidefinite programming gives a
better approximation ratio (see Theorem 11).

4 Regular hypergraphs

Let H be an r-uniform, d-regular hypergraph. That is, each hyperedge contains exactly
r vertices, and each vertex has degree d. Let n denote the number of vertices and m the
number of hyperedges. (Clearly, rm = dn.)

For every such hypergraph, the optimal value of min sum set cover is at least mn+r
2r ,

because at most d hyperedges are covered per step, and at this rate, it takes m
d = n

r steps
to cover all hyperedges. Hence the average number of steps until a hyperedge is covered is
at least n+r

2r .
On the other hand, the optimal solution has value at most mn+1

r+1 . This can be seen
as follows. Consider a random permutation of all vertices. Then for every hyperedge, the
expected step in which it is first covered is exactly n+1

r+1 . (This last statement can be proven
by considering a random cyclic permutation on n + 1 elements, of which r + 1 are special.
Now select at random which of the r+1 special elements marks the start of the permutation
on the rest of the n elements, and the other r special elements are the vertices that compose
the hyperedge. Then over the choice of where the permutation starts, the expected number
of steps until another special element is reached is exactly (n + 1)/(r + 1).) Hence there is
some ordering of the vertices for which the average time to cover a hyperedge is at most n+1

r+1 .
Moreover, the greedy algorithm produces such an ordering. (One way of seeing this is that

11

the method of conditional expectations produces the greedy algorithm as a derandomization
of the randomized algorithm.)

The above proves the following theorem.

Theorem 10 For every r-uniform d-regular hypergraph, the approximation ratio of the
greedy algorithm for min sum set cover is no worse than 2r

r+1 . In particular, the approxima-
tion ratio of the greedy algorithm for min sum vertex cover on regular graphs is no worse
than 4/3.

As r gets larger, the approximation ratio of the greedy algorithm on r-uniform regular
hypergraphs approaches 2. This cannot be significantly improved unless P=NP, as we shall
see in Theorem 12. However, for the special case of r = 2 (regular graphs), we can improve
over the greedy algorithm.

Theorem 11 There is some constant 1 < ρ < 4/3 such that min sum vertex cover can be
approximated within a ratio of ρ on regular graphs.

Proof: The central algorithmic tool used in our proof is semidefinite programming. The
presentation of the algorithm is greatly simplified (perhaps at some loss in the approximation
ratio) by using in a “blackbox” manner previous results regarding the use of semidefinite
programming for the max k-vertex cover problem. For some fixed ε > 0, if the average
step by which the optimal solution covers an edge is (1

4 + ε)n, then the greedy algorithm
achieves an approximation ratio of 4

3 − Ω(ε) < 4/3, as desired. Hence we can assume that
the optimal solution covers at least (1 − ε)m edges in n/2 steps. This means that there is
a set of n/2 vertices that covers (1 − ε)m edges.

Apply now an algorithm for the max k-vertex cover problem with k = n/2, which asks
for a set of k vertices that covers as many edges as possible. As shown in [9] (and improved
later by others), when k = n/2 this problem can be approximated (using semidefinite
programming) within ratios strictly better than 4/5, say, 4/5 + δ. (Using [11] we can take
δ = 0.0452.) Hence we can find in polynomial time a set S of n/2 vertices that cover at
least (4

5 + δ − ε)m edges. We take ε < δ/2, giving (4
5 + δ

2)m edges.
Now cover all edges by first taking all vertices of S in a random order, and then taking

the rest of the vertices in a random order. A (4
5 + δ

2) fraction of the edges are covered on
average by step n

4 . The rest of the edges are covered on average at step n
2 + 1

3
n
2 = 2n

3 .
Computing a weighted average, the average time to cover an edge is (1

3 −Ω(δ))n. This gives
an approximation ratio of 4

3 − Ω(δ) < 4/3, as desired.
2

5 Hardness of approximation

Theorem 12 For every ε > 0, it is NP-hard to approximate min sum set cover within a
ratio of 2 − ε on uniform regular hypergraphs.

Theorem 10 shows that Theorem 12 is essentially best possible. The proof of Theorem 12
is very similar to the proof given in [6] of the result that it is NP-hard to approximate the
max k-coverage problem within a ratio better than 1−1/e+ε. We do not wish to reproduce

12

here the proof already given in [6]; instead, we provide a sketch of the proof, using the
terminology of [6].

Sketch of Proof of Theorem 12: In [6] a reduction from max 3SAT-5 to max k-coverage
is described. We note that the resulting instance of max k-coverage (which is a hypergraph)
is regular – each set contains the same number of points (or equivalently, each vertex appears
in the same number of hyperedges) – but not uniform, since some points are covered by
more sets than others (equivalently some hyperedges contain more vertices than others). To
make the hypergraph also uniform, we change the starting point of the reduction. Rather
than starting from a 3CNF formula in which each variable appears in exactly five clauses,
we start from a 3CNF formula in which each literal appears in exactly three clauses (and
each variable in six clauses). We call the satisfiability problem for such formulas 3SAT-
6. We note that for some δ < 1, it is NP-hard to distinguish between satisfiable 3SAT-6
formulas, and those in which at most a δ-fraction of the clauses are satisfiable. (This can be
proven by reduction from 3SAT-5, in which each variable appears 3 times in positive form
and twice negated. For a 3SAT-5 formula with n variables, join to it a satisfiable 2SAT-6
formula with n clauses on a fresh set of variables, and to each of the 2CNF clauses add
one of the original variables negated.) The adaptation of the reduction of [6] now gives a
regular uniform hypergraph; this is a consequence of the following symmetries:

1. Every clause in the CNF formula contains the same number of literals (three in our
case).

2. Every literal appears in the same number of clauses (three in our case).

3. Every code word (in the proof system of Section 2 in [6]) has exactly the same Ham-
ming weight (`/2 when the Hadamard code is used).

4. In the partition system (proof of Theorem 12 in [6]) each part has exactly the same
size (m/k, using the notation of [6]).

Now there are two cases:

1. If the original 3SAT-6 formula is satisfiable, then the reduction has the property that
there is a collection of disjoint sets (and necessarily of equal cardinality) that covers
all points. Let us denote by t the number of sets used in such a cover. Hence for the
min sum set cover problem, a hyperedge is covered by step t/2, on average.

2. If the original 3SAT-6 formula was only δ-satisfiable (for δ < 1), the reduction has
the following property:

For every choice of constants c0 > 0 and ε > 0, it is possible to choose the parameter
` (number of repetitions in the proof system) to be a large enough constant so that
for every 1 ≤ x ≤ c0t, at least a fraction of 1 − (1 − 1/t)x − ε of the points remain
uncovered by x sets.

The proof of this property is an extension of the proof of Theorem 12 in [6] and is
omitted. Now for an arbitrarily small ε > 0, pick c0 ' − ln ε and ε ' ε/c0. We note
that t may be assumed to be arbitrarily large (this is always the case in reductions

13

to set cover, as checking whether there is a cover by t sets can be done in time
roughly nt, and having t constant would show that P=NP), implying that (1− 1/t)
is approximated arbitrarily well by e−1/t. Hence the average time step by which a
hyperedge is covered in the min sum set cover instance is roughly at least

f(x) =
c0t∑
x=1

(e−x/t − ε).

Approximating this sum by an integral and integrating we get F (x) = (−te−x/t − εx).
Substituting in F the range of the integration we get F (c0t) = −te−c0 − εc0t ' −2εt,
and F (1) = −te−t − ε ' −(t − 1) − ε < −t + εt. Hence F (c0t) − F (1) ≥ (1 − 3ε)t,
implying that a hyperedge is covered by step (1 − O(ε))t, on average.

The gap between the two cases can be made arbitrarily close to a factor of 2. 2

For nonregular instances of mssc we prove a stronger hardness of approximation result
which matches the positive result of Theorem 4. The proof of the following theorem was
inspired by [3].

Theorem 13 For every ε > 0, it is NP-hard to approximate min sum set cover within a
ratio of 4 − ε on uniform hypergraphs.

Proof: The proof goes via a reduction from the regular uniform case (Theorem 12).
Consider an instance of uniform regular set cover with n points on which it is NP-hard to
distinguish between the case in which all points can be covered by t disjoint sets, and the
case in which every c sets cover at most a fraction of 1 − (1 − 1/t)c + ε of the points (as
in the proof of Theorem 12). For a large enough constant k, make k disjoint copies of this
instance. Let a = (k!)2. For each 1 ≤ i ≤ k, duplicate a/i2 times each point in copy i (all
duplicates of a point e appear in exactly the same sets as the point e does). Note that the
instance obtained by this process is still uniform (every point appears in the same number
of sets) but not regular (sets in copy i are larger than those in copy j, for i < j).

We claim that if mssc can be approximated within a ratio better than 4 on this instance,
then mssc can be approximated within a ratio better than 2 on the original instance.

Consider first the case that the original regular mssc instance can be covered by t
disjoint sets. Then the optimal way of covering the new instance is to cover it copy by
copy, starting with copy 1 and ending with copy k. The contribution F (i) of copy i to the
objective function is

F (i) = [(i − 1)t +
t

2
]n

a

i2
.

Asymptotically, for large i we have that F (i) ' tna/i. It follows that the cost of the whole
solution is roughly

k∑
i=1

F (i) '
k∑

i=1

tna

i
' tna ln k.

An important consequence of this is that the contribution of F (i) to the total cost summed
over all “small” values of i (e.g., for all i < 100, when k is a sufficiently large constant) is
negligible compared to the total cost.

14

Consider now the case that for the original regular mssc instance, every c sets cover at
most a fraction of 1− (1−1/t)c + ε of the points (for every c ≤ c0t, where c0 is a sufficiently
large constant). In this case the best way to cover the new instance is to start with copy 1,
when only na/22 points remain in copy 1 continue with copies 1 and 2 simultaneously,
when only na/32 points remain in each of copies 1 and 2 continue with copies 1,2 and 3
simultaneously, and so on. Any better way of covering the new instance gives a better way
of covering the original instance, which is a contradiction. Let I(i) denote the contribution
of copy i to the objective function. This contribution is computed as the difference in mssc
cost of covering the first i copies compared to the mssc cost of covering the the first i − 1
copies. This difference occurs only at the time the first point of set i gets covered. This time
step is

∑i−1
j=1 t ln(i2/j2). At this point, when we need to cover i copies we still have ina/i2

elements left, and the expected additional time to cover each element is ti. When we need
to cover i − 1 copies we still have (i − 1)na/i2 elements left, and the expected additional
time to cover each element is t(i − 1). It follows that

I(i) = n
a

i2
[i(

i−1∑
j=1

t ln
i2

j2
+ it) − (i − 1)(

i−1∑
j=1

t ln
i2

j2
+ (i − 1)t)].

Simplifying, one gets that I(i) = n a
i2 [

∑i−1
j=1 t ln(i2/j2)+(2i−1)t]. The term

∑i−1
j=1 t ln(i2/j2) =

2
∑i−1

j=1 t(ln i − ln j) ' 2ti, which can be verified by approximating the sum by an integral,
and noting that the integral of ln j is j ln j − j. Hence we obtain that for large i,

I(i) ' n
a

i2
· 4ti ' 4F (i).

Summing up, the factor 2 gap in the regular mssc problem is amplified to a factor 4 gap in
the irregular mssc problem.

2

We now prove hardness of approximation for msvc .

Theorem 14 For some ε′ > 0, it is NP-hard to approximate min sum vertex cover within
ratios better than 1 + ε′.

Proof: For some universal constant d ≥ 3, let G be a graph with n vertices, m edges,
and degree at most d. It is known that for every d ≥ 3, min vertex cover is hard to
approximate on graphs of degree at most d (implicit in [1]). Moreover, for these NP-
hard instances the minimum vertex cover contains at least n/2 vertices. This follows from
the fact that whenever a graph has a vertex cover with less than n/2 vertices, a set of
vertices not belonging to the minimum vertex cover can be found in polynomial time (see
for example [12]), and then the input instance can be simplified. It follows that for every
d ≥ 3 it is NP-hard to approximate min vertex cover within an additive factor of εn, where
ε > 0 may depend on d, but is independent of n. We reduce the problem of approximating
the min vertex cover problem on bounded degree graphs to the problem of approximating
min sum vertex cover.

Let k = d
2ε . Construct a graph G′ that is the disjoint union of G and kn additional

isolated edges (i.e., vertex disjoint union of G and a matching of size kn). On G′ we wish
to approximate min sum vertex cover. The optimal solution to min sum vertex cover on G′

15

may be assumed without loss of generality to first cover all edges of G, and only then cover
the isolated edges, because the isolated edges can be covered at a rate of at most one at a
time, and edges in G can be covered at a rate of at least one at a time.

Let us consider the case that G has a vertex cover with at most t vertices. Then G′ has
a min sum vertex cover of value at most m t

2 + kn(t + kn
2).

Let us now consider the case that G has no vertex cover with less than t + εn vertices.
Then it costs at least kn(t + εn + kn

2) to cover the kn isolated edges, and we use this as a
lower bound on the value of min sum vertex cover for G′.

The difference between the two cases is at least εkn2 −m t
2 . Using m ≤ dn/2 and t ≤ n,

this difference is at least n2(εk − d
4). Using k = d

2ε , this difference is at least εk
2 n2. The

optimal solution to min sum vertex cover on G′ is of value at most mn
2 +kn(n+ kn

2) ≤ k2n2,
where the last inequality follows from simple manipulations, using d ≥ 3 and ε ≤ 1/2 (which
are true in our context). Setting ε′ = 1/2k = ε/d, it follows that if we could approximate
min sum vertex cover in G′ within a ratio better than 1 + ε′, then we could approximate
min vertex cover in G within a ratio better than δ. 2

We have not made an effort to find the best possible value of ε′ for Theorem 14.

Acknowledgements

We thank Uri Barenholz for useful comments on an earlier version of this manuscript. The
work of the first author was supported in part by a grant from the Israel Science Foundation.

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy. “Proof verification and the
hardness of approximation problems”. JACM 45(3):501–555, 1998.

[2] A. Bar-Noy, M. Bellare, M. Halldorsson, H. Shachnai, T. Tamir. “On chromatic sums
and distributed resource allocation.” Information and Computation, 140:183–202, 1998.

[3] A. Bar-Noy, M. Halldorsson, G. Kortsarz. “A matched approximation bound for the
sum of a greedy coloring”. Information Processing Letters, 71 (1999), 135-140.

[4] S. Burer and R. Monteiro. “A projected gradient algorithm for solving the maxcut SDP
relaxation”. Optimization Methods and Software, 15 (2001) 175-200.

[5] E. Cohen, A. Fiat, H. Kaplan. “Efficient Sequences of Trails”. In Proceedings of SODA,
2003.

[6] U. Feige. “A threshold of lnn for approximating set cover”. Journal of the ACM, 45(4),
634–652, 1998.

[7] U. Feige, M. Halldorsson, G. Kortsarz, A. Srinivasan. “Approximating the domatic
number”. Preliminary version in STOC 2000.

[8] U. Feige and J. Kilian. “Zero knowledge and the chromatic number”. Journal of Com-
puter and System Sciences, 57(2):187–199, 1998.

16

[9] U. Feige and M. Langberg. “Approximation algorithms for maximization problems aris-
ing in graph partitioning”. Journal of Algorithms 41, 174–211 (2001).

[10] U. Feige, L. Lovasz, P. Tetali. “Approximating min sum set cover”. In Proceedings of
APPROX, 94–107, 2002.

[11] E. Halperin and U. Zwick. “A unified framework for obtaining improved approximation
algorithms for maximum graph bisection problems”. In proceedings of IPCO, 2001.

[12] G. Nemhauser and L. Trotter. ”Vertex packings: Structural properties and algorithms.”
Mathematical Programming, 8:232–248, 1975.

17

