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Abstract

We consider a meanderM = [A : B] to be formed from two setsA andB of n nonintersecting arcs,
lying above and respectively below a horizontal line, whichjoin to form a single closed loop. We prove
that the set of meanders is connected under appropriate pairs of balanced local moves, one operating on
A and the other onB. We also prove that the subset of meanders with a fixedB is connected under a
suitable local move operating on an appropriately defined meandric triple inA. We provide diameter
bounds under such moves, tight up to a (worst case) factor of two.

1 Introduction

A closed meander of ordern is a non-self-intersecting closed curve in the plane which crosses a horizontal
line at2n points, up to homeomorphism in the plane. The study of meanders is said to be traceable back to
Poincaré’s work on differential geometry, and has subsequently arisen in different contexts such as polymer
folding [6, 21, 26] and noncrossing partitions [24, 25]. Counting the number of closed meanders of ordern
appears reasonably difficult, and the problem remains open.

In this paper, we investigate the relationship among meanders under appropriate local moves. In this
way, our results are similar to other work studying local moves which transform one Euler tour into another
in any Eulerian graph [1], one Latin square into another [17], and one contingency table into another [10].
We consider a meanderM = [A : B] to be formed from two setsA andB of n nonintersecting arcs, lying
above and respectively below a horizontal line, which join to form a single closed loop. Our results show
that meanders are connected under appropriate pairs of local moves on nested arcs. In the first case, we
operate on bothA andB simultaneously to produceM ′ = [A′ : B′] and in the second we operate twice on
A to produceM ′′ = [A′′ : B]. Our results also imply a tight (up to a multiplicative constant) upper bound
of 2n on the maximum number of local moves to transform one meanderinto another.

The paper is organized as follows. In Section 2, we give a local move on nonintersecting arcs which is
analogous to previously considered local moves on chord diagrams [22] and plane trees [16]. We prove that
there exists suitable “balanced” pairs of such moves, one operating onA and the other onB, such that the
result is another meander. We also show that the set of meanders is connected under such balanced pairs
of local moves. In Section 3, we extend this approach to disjoint subsets of meanders, since meanders are
partitioned into equivalence classes under “rotation” and“reversal.” We consider the relationship among
subsets of meanders with a fixedB by introducing meandric moves as a local move operation on three
arcs which form a meandric triple. We keep the set of arcs below the line fixed, and operate onA by a
meandric triple move, an operation which exchanges three arcs fromA for another triple while preserving
meandricity. Our central result is a theorem which states that meanders with a fixed set of bottom arcsB are
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Figure 1: The three cases where an arc(i′′, j′′) obstructs the arcs(i, j) and(i′, j′) from each other. Only the
relevant arcs are drawn, and the endpoints are labeled simply with the integer index.

connected under this meandric triple move. We letγ(B) denote the graph whose vertices are all meanders
with a given setB of bottom arcs and whose edges represent a meandric move. Along with a number of
supporting results, we prove that

Theorem. The graphγ(B) is connected.

In Section 4, we then give some characteristics, including diameter bounds, of these newly introduced
meander graphs. Our connectivity results for meander graphs suggest the potential of sampling uniformly
from the set of all meanders of ordern, using the Markov chain Monte Carlo (MCMC) technique. Hence,
we conclude in Section 5 with a brief discussion of the meander enumeration problem and uniform sampling
question.

2 Balancing local moves on meanders

We consider2n pointsp1, . . . , p2n on a fixed horizontal linel in the plane, where the pointspi occur in
order of increasing index1 ≤ i ≤ 2n from left to right along the line. LetM be a closed meander of order
n which intersectsl at the pointspi, and letMn denote the set of all suchM . See Figure 2 on page 6 for
six of the eight meanders fromM3.

We note that two combinatorial operations on the pointspi which preserve meandricity arerotation, that
is pi → pi−1 (mod 2n), andreversal, that ispi → p2n+1−i. Up to equivalence under these operations, there
are two distinct meanders in Figure 2 and one distinct arrangement of arcs in Figure 1 above.

We considerM to be composed of2n nonintersecting arcs with endpointsp1, . . . , p2n. We let (i, j)
denote an arc with endpointspi andpj for i < j, and note that eachpi is the endpoint of two arcs, one lying
above the line and the other below. LetA be the set ofn nonintersecting arcs lying abovel, andB the set
lying below. We introduce the notationM = [A : B] to denote the meanderM with arcsA above the points
pi and arcsB below.

Conversely, consider an arbitrary arrangement ofn nonintersecting arcs with endpointsp1, . . . , p2n on
the horizontal linel. LetAn be the set of all possible arrangements where then arcs lie abovel, andBn the
set where all the arcs lie belowl. Let A ∈ An andB ∈ Bn, and consider the set of closed curves formed by
the arcs ofA andB, denoted(A : B). We writec(A,B) = k when there arek closed curves in(A : B).
Whenc(A,B) = 1, then the single closed curve(A : B) is a meander and

(A : B) = [A : B] = M for someM ∈ Mn.

Whenc(A,B) > 1, then(A : B) form what is known as a system of meanders.
We define a local move operation onM ∈ Mn by first considering an appropriate operationσ(A) on a

set ofn nonintersecting arcsA ∈ An. Consider two arcs(i, j), (i′, j′) ∈ A. If i < i′, then either

i < j < i′ < j′ or i < i′ < j′ < j.
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As illustrated by Figure 1, the operationσ(A) on (i, j) and(i′, j′) given below will be well-defined exactly
when the two arcs are unobstructed. We say that(i, j) and(i′, j′) areunobstructedif there is no third arc
(i′′, j′′) ∈ A where

i < j < i′′ < i′ < j′ < j′′ or i < i′′ < i′ < j′ < j′′ < j or i′′ < i < j < j′′ < i′ < j′.

Let (i, j), (i′ , j′) ∈ A with i < i′. Suppose that(i, j) and(i′, j′) are unobstructed inA. Defineσ(A), or
more explicitlyσi,j,i′,j′(A), as

σi,j,i′,j′(A) =

{
A \ {(i, j), (i′ , j′)} ∪ {(i, i′), (j′, j)} if i < i′ < j′ < j
A \ {(i, j), (i′ , j′)} ∪ {(i, j′), (j, i′)} if i < j < i′ < j′

.

This operation is analogous to previously considered localmoves on chord diagrams [22] and plane trees [16].
We also considerσ(B) for B ∈ Bn, and the operation’s effect on(A : B).

Lemma 1. LetA ∈ An, B ∈ Bn. Then|c(A,B) − c(σ(A), B)| = 1.

Proof. Supposec(A,B) = k. Let (i, j) and(i′, j′) be the two unobstructed arcs fromA\σ(A). If (i, j) and
(i′, j′) lie on the same curve from(A : B), thenc(σ(A), B) = k + 1. Otherwise, they lie on two different
curves andc(σ(A), B) = k − 1.

By symmetry, we have the same result forσ(B). Thus, for every meanderM = [A : B], we have that
c(σ(A), B) = 2 andc(A,σ(B)) = 2.

Theorem 1. Let M = [A : B] ∈ Mn. For every pair of unobstructed arcs inA there exists a pair of
unobstructed arcs inB such thatc(σ(A), σ(B)) = 1.

We call the local moveσ(B) a compensatory local move forσ(A) and refer to the pair as balanced. The
result claims that there always exist a compensatory operation onB, so that we may consider the effect of
transitioning between meandersM = [A : B] andM ′ = [σ(A) : σ(B)] connected by balanced pairs of
local moves.

To prove Theorem 1, we introduce different notation for describing the2n arcs which make up a meander
or system of meanders in the plane. LetA ∈ An and observe thatj − i is odd for every arc(i, j) ∈ A. If

i is odd, then we denote this arc asi
A
⇀ j and asj

A
⇀ i otherwise. Similarly, but with the reversed parity,

every(2i, 2j − 1) ∈ B is written2i
B
⇁ 2j − 1 and every(2j − 1, 2i) ∈ B is also denoted2i

B
⇁ 2j − 1. In

this way, a meander can be written as an ordered, alternatingsequence of arcs fromA andB:

1
A
⇀ 2i1

B
⇁ 2j2 − 1

A
⇀ 2i2

B
⇁ . . .

B
⇁ 2jn − 1

A
⇀ 2in

B
⇁ 1 = 2j1 − 1

for 1 ≤ ik, jk ≤ n. Typically, we drop theA andB designation and simply write:

1 ⇀ 2i1 ⇁ 2j2 − 1 ⇀ 2i2 ⇁ . . . ⇁ 2jn − 1 ⇀ 2in ⇁ 1.

We note that a system of meanders can be written as a set of suchordered, alternating sequences of arcs
from A andB.

Proof of Theorem 1.Let M = [A : B] ∈ Mn. Suppose thati ⇀ j andi′ ⇀ j′ are two unobstructed arcs
from A. It suffices to show that there exist unobstructed arcsk ⇁ l andk′ ⇁ l′ from B with

i ⇀ j . . . k ⇁ l . . . i′ ⇀ j′ . . . k′ ⇁ l′ . . . ⇁ i

for the sequence of ordered, alternating arcsM = [A : B]. Let S be the set of integers which occur in
the sequence of arcsj ⇁ . . . ⇁ i′ andS′ be the set occurring inj′ ⇁ . . . ⇁ i. ThenS andS′ are a
partition of the integers{1, 2, . . . , 2n} and, without loss of generality, there existsk ∈ S andl′ ∈ S′ such
that |k − l′| = 1 (mod 2n). Thus the arcsk ⇁ l andk′ ⇁ l′ are unobstructed inB.

3



We make the previous discussion concrete by considering thefollowing example. It will be useful at
times to adopt the familial terminology from rooted trees torefer to the nesting of arcs. Consider two arcs
(i, j) and(i′, j′) with i < i′. When there are no obstructing edges andi < i′ < j′ < j, then(i, j) is the
parent of its child(i′, j′). Otherwise,i < j < i′ < j′ and the two unobstructed arcs are siblings. Ancestors
and descendants refer to arcs with a chain of parent/child relationships. For simplicity, we consider all arcs
(i, j) with 1 ≤ i < j ≤ 2n to be descendants of an (unexpressed) primordial arc(0, 2n+1). We note that if
(i, j) and(i′, j′) are unobstructed, theni andi′ have opposite parity exactly when they are parent and child.

Example 1. Let A = {(1, 2), (3, 4), (5, 6), (7, 8)} and B = {(1, 8), (2, 3), (4, 5), (6, 7)}. Together they
form the meanderM = [A : B] with the single closed loop1 ⇀ 2 ⇁ 3 ⇀ 4 ⇁ 5 ⇀ 6 ⇁ 7 ⇀ 8 ⇁
1. Consider the local move on the unobstructed arcs(1, 2) and (5, 6) in A resulting inσ(A) = A′ =
{(1, 6), (2, 5), (3, 4), (7, 8)}. We note that the local move replaces sibling arcs(1, 2), (5, 6) ∈ A with the
parent/child arcs(1, 6), (2, 5) ∈ A′. Now(A′ : B) form a system of meanders withc(A′, B) = 2 consisting
of the pair of closed loops1 ⇀ 6 ⇁ 7 ⇀ 8 ⇁ 1 and3 ⇀ 4 ⇁ 5 ⇀ 2 ⇁ 3. The arcs2 ⇁ 3 and1 ⇁ 8 must
be unobstructed inB so we have the compensatory local moveσ(B) = B′ = {(1, 2), (3, 8), (4, 5), (6, 7)}
such thatc(A′, B′) = 1. Hence, we have the meanderM ′ = [A′ : B′] consisting of the single closed loop
1 ⇀ 6 ⇁ 7 ⇀ 8 ⇁ 3 ⇀ 4 ⇁ 5 ⇀ 2 ⇁ 1.

We note that the proof of Theorem 1 guarantees the existence of at least one balanced pairσ(A), σ(B).
In general, there may be many such compensatory operations on B. For instance, in the previous example
there are three other local moves onB which also yield a meanderM ′ = [σ(A) : σ(B)]. We now consider
the relationship among meanders when we operate on the arcs above and below the horizontal line by pairs
of balanced local moves.

Definition 1. LetGn be the graph whose vertices areM,M ′ ∈ Mn and whose edges connectM = [A : B]
andM ′ = [σ(A) : σ(B)].

Theorem 2. The graphGn is connected.

Proof. Let Un = {(2i − 1, 2i) | 1 ≤ i ≤ n} andLn = {(1, 2n), (2i, 2i + 1) | 1 ≤ i < n}. Then
[Un : Ln] ∈ Mn. For M = [A : B] ∈ Mn, there exists a sequence of local moves onA such that
σ(. . . σ(A)) = Un. By Theorem 1, for each local move on the upper arcs, there is acompensatory local
move on the bottom.

We note that an alternative proof of Theorem 2 follows from the connection between meanders and pairs
of noncrossing partitions, see [12, 13] as well as [15, 24]. In that context, the graphGn is the Hasse diagram
of the induced partial order.

3 Graphing meandric triple moves

Now, we extend our approach from the full graphGn to disjoint subsets of meanders. We fixB ∈ Bn and
consider the graphγ(B) of the relationship among the meandersM = [A : B] ∈ Mn under some suitable
local move. Our interest in this problem arises from the equivalence of meanders under the operations of ro-
tation and reversal, and the potential for investigating the combinatorics ofγ(B) for different representative
B ∈ Bn. Here, we show that the subset of meanders with fixedB is connected under a local move operation
on three arcs which form a meandric triple.

Definition 2. Let i ⇀ j, i′ ⇀ j′, andi′′ ⇀ j′′ be three arcs fromA ∈ An. The three arcs are a meandric
triple if exactly two of the three pairs of arcs are unobstructed.
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Assuming no other obstructing arcs, Figure 1 on page 2 illustrates the three possible configurations for
a meandric triple – which are equivalent under rotation and reversal.

Theorem 3. LetM = [A : B] ∈ Mn, and suppose there is a meandric triple inA. There exists a sequence
of two local moves on the meandric triple such thatc(σ(σ(A)), B) = 1.

Proof. Let i ⇀ j, i′ ⇀ j′, and i′′ ⇀ j′′ be a meandric triple fromA wherei ⇀ j and i′ ⇀ j′ are
unobstructed,i ⇀ j andi′′ ⇀ j′′ are unobstructed, and

i ⇀ j
R

︷︸︸︷. . . i′ ⇀ j′ . . .
︸︷︷︸

R′

i′′ ⇀ j′′
R′′

︷︸︸︷. . . .

Suppose that
j′′ < i < j′ < i′ < j < i′′.

Since the arcs(i, j) and(j′, i′) are unobstructed inA, the local moveσi,j,j′,i′(A) is well-defined. Moreover,
the arcs(i, j′) and(i′, j) are both unobstructed from(j′′, i′′) ∈ σ(A). We operate on the arcs(i′, j) and
(j′′, i′′) to obtain(j′′, i′), (j, i′′) ∈ σ(σ(A)). Thus,c(σ(σ(A)), B) = 1 and we have the meander

i ⇀ j′ . . .
︸︷︷︸

R′

i′′ ⇀ j
R

︷︸︸︷. . . i′ ⇀ j′′
R′′

︷︸︸︷. . . .

There are six different cases for the ordering ofpi, pj , . . . along the horizontal linel. Under rotation,
pi → pi−1 (mod 2n), there are two distinct equivalence classes. Under reversals, pi → p2n+1−i, those two
classes are equivalent.

Definition 3. Let M = [A : B] ∈ Mn and i ⇀ j, i′ ⇀ j′, and i′′ ⇀ j′′ be a meandric triple inA with
i ⇀ j . . . i′ ⇀ j′ . . . i′′ ⇀ j′′ . . .. Define a meandric move onM , denotedτ(M), as the sequence of two
local moves which results in the meanderM ′ = [σ(σ(A)) : B] where the meandric triple inA is replaced
by i ⇀ j′, i′′ ⇀ j, andi′ ⇀ j′′ in σ(σ(A)).

Definition 4. For B ∈ Bn, let γ(B) be the graph whose vertices areM = [A : B] ∈ Mn and whose edges
connectM andτ(M).

Theorem 4. For B ∈ Bn, the graphγ(B) is connected.

The proof of Theorem 4 follows from Theorems 5 and 6, and the following related definitions.

Definition 5. Letβi be the arc(i, i + 1) for 1 ≤ i < 2n andβ2n = (1, 2n).

Theorem 5. For M = [A : B] ∈ Mn with βk ∈ B, βk−1 (mod 2n) /∈ A, there exists a meandric move
τ(M) = [A′ : B] such thatβk−1 (mod 2n) ∈ A′.

We have the following immediate dual result under reversals, pi → p2n+1−i, which preserve meandric
triples.

Corollary 1. For M = [A : B] ∈ Mn with βk ∈ B, βk+1 (mod 2n) /∈ A, there exists a meandric move
τ(M) = [A′ : B] such thatβk+1 (mod 2n) ∈ A′.

Definition 6 makes precise the intuitive notion of contracting a bumpβi from A and the two connecting
arcs inB to produce a reduced meander of ordern − 1.
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Figure 2: The six meanders fromM3 which are connected under pairs of local moves on meandric triples.
(The other two meanders,[U3 : L3] and[L3 : U3], have no meandric triple.) Although the endpoints are not
labeled, we note the equivalences under rotations,pi → pi−1 (mod 2n), and reversals,pi → p2n+1−i.

Definition 6. LetM = [A : B] ∈ Mn. For β2n ∈ A, defineρ(M, 2n) to be the meander[A′ : B′] ∈ Mn−1

with
(l, l′) ∈ B′ for (1, l), (l′, 2n) ∈ B and 1 < l < l′ < 2n

and, forX = A,B, with

(i, j) ∈ X ′ for (i + 1, j + 1) ∈ X and 1 < i < j < 2n.

For βk ∈ A with 1 ≤ k < 2n, defineρ(M,k) to be the meander[A′ : B′] ∈ Mn−1 with







(l′, l) ∈ B′ for (l′, k + 1), (l, k) ∈ B and 1 ≤ l′ < l < k < k + 1 ≤ 2n
(l, l′) ∈ B′ for (l, k), (k + 1, l′) ∈ B and 1 ≤ l < k < k + 1 < l′ ≤ 2n
(l′, l) ∈ B′ for (k, l), (k + 1, l′) ∈ B and 1 ≤ k < k + 1 < l′ < l ≤ 2n

and, forX = A,B, with

(i, j) ∈ X ′ whenever







(i, j) ∈ X and 1 ≤ i < j < k < k + 1 ≤ 2n
(i, j + 2) ∈ X and 1 ≤ i < k < k + 1 < j + 2 ≤ 2n

(i + 2, j + 2) ∈ X and 1 ≤ k < k + 1 < i + 2 < j + 2 ≤ 2n.

If βk /∈ A, thenρ(M,k) is not defined.

Theorem 6. The operationρ : Mn × {1, 2, . . . , 2n} → Mn−1 is well-defined.

Assuming Theorems 5 and 6, whose proofs are given below, we now prove Theorem 4.
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Proof of Theorem 4.For n > 3, let B ∈ Bn and considerM = [A : B],N = [C : B] ∈ Mn. We claim
thatM andN are connected inγ(B) by a sequences of meandric moves.

There exists at least oneβk ∈ B. Let j = k−1 (mod 2n) and suppose thatβj /∈ A∪C. By Theorem 5,
there exist a meandric moveτ(M) = M ′ = [A′ : B] and a meandric moveτ(N) = N ′ = [C ′ : B] such
thatβj ∈ A′ ∩ C ′.

Observe thatβj obstructs no arcs in eitherA′ or C ′. By induction,ρ(M ′, j) andρ(N ′, j) are connected
by a sequence of meandric moves. Hence, there exists a sequence of meandric moves on then − 1 upper
arcs ofM ′ which leaves the arcβj ∈ A′ ∩ C ′ fixed and which connectsM ′ to N ′.

Proof of Theorem 5.Under the rotational equivalencepi → pi−1 (mod 2n), we may assume without loss of
generality that(2n− 1, 2n) ∈ B, (2n− 2, 2n− 1) /∈ A for M = [A : B] ∈ Mn. We claim that there exists
τ(M) = [A′ : B] ∈ γ(B) such that(2n − 2, 2n − 1) ∈ A′.

The arcs

(l, 2n), (l′, 2n − 1), (l′′, 2n − 2) ∈ A with 1 ≤ l < l′ < l′′ < 2n − 2 < 2n − 1 < 2n

are a meandric triple with
l ⇀ 2n ⇁ 2n − 1 ⇀ l′ . . . l′′ ⇀ 2n − 2 . . . .

After operating on this meandric triple, we have

l ⇀ l′ . . . l′′ ⇀ 2n ⇁ 2n − 1 ⇀ 2n − 2 . . . .

Proof of Theorem 6.Let M = [A : B] ∈ Mn. We claim that forβk ∈ A, the mapρ(M,k) is well-defined.
Suppose(1, 2n) ∈ A. The arcs ofA andB form the meanderM :

l ⇁ 1 ⇀ 2n ⇁ l′ . . . j′ ⇁ i ⇀ j ⇁ i′ . . . .

Then
l ⇁ l′ . . . (j′ − 1) ⇁ (i − 1) ⇀ (j − 1) ⇁ (i′ − 1) . . .

is the meanderρ(M, 2n) = [A′ : B′] since

A′ = {(i − 1, j − 1) | (i, j) ∈ A, 1 < i < j < 2n} ∈ An−1

and

B′ = {(i − 1, j − 1) | (i, j) ∈ B, 1 < i < j < 2n} ∪ {(l, l′) | (1, l), (l′, 2n) ∈ B} ∈ Bn−1.

The case when(k, k + 1) ∈ A for 1 ≤ k < 2n is similar, although the shifting of the endpoint indices
for an arc(i, j) from M depends on the ordering ofi andj with respect tok. Deleting the arc(k, k + 1)
from A, replacing the two arcs with endpointsk andk + 1 in B with a new arc, and these shifts in indices
introduce no intersections. HenceA′ ∈ An−1, B′ ∈ Bn−1, and[A′ : B′] = ρ(M,k) ∈ Mn−1.

4 Some characteristics of meander graphs

We note that the proof of Theorem 4 implies that the diameter of γ(B) is at most2n for B ∈ Bn. This upper
bound is never achieved since for3 ≤ n ≤ 8, the maximum diameter ofγ(B) is n − 2.
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Example 2. Whenn = 9, there is exactly one (nonisomorphic) pair of meanders[A : B] and [A′ : B]
whose geodesic has8 meandric moves inγ(B):

B = {(1, 10), (2, 9), (3, 8), (4, 5), (6, 7), (11, 18), (12, 17), (13, 14), (15, 16)}
A = {(1, 16), (2, 15), (3, 14), (4, 13), (5, 12), (6, 11), (7, 10), (8, 9), (17, 18)}
A′ = {(1, 4), (2, 3), (5, 18), (6, 17), (7, 16), (8, 15), (9, 14), (10, 13), (11, 12)}

This is the only pair of meanders, up to rotation and reversals, whose geodesic has length greater than
n − 2 for n = 9. Whenn = 10, there are three nonisomorphic pairs with length 9.

We contrast this with the diametern − 1 of Gn from Definition 1. Recall thatGn is the graph of all
meandersM = [A : B] ∈ Mn connected under balanced local moves toM ′ = [σ(A) : σ(B)]. Let
M = [A : B],M ′ = [A′ : B′] ∈ Mn be two arbitrary meanders. Ifβk ∈ A′, there is always a local move
such thatβk ∈ σ(A) and a compensatory local moveσ(B) such that[σ(A) : σ(B)] ∈ Mn. This is not the
case for meandric moves; the smallest example is the following.

Example 3. Whenn = 5, there is exactly one (nonisomorphic) pair of meandersM = [A : B] and
M ′ = [A′ : B] such that for everyβk ∈ A there exists noτ(M ′) = [A′′ : B] with βk ∈ A′′, and vice versa:

B = {(1, 10), (2, 9), (3, 8), (4, 7), (5, 6)}
A = {(1, 4), (2, 3), (5, 10), (6, 9), (7, 8)}
A′ = {(1, 6), (2, 5), (3, 4), (7, 10), (8, 9)}

We say that such a pair of meanders is interlocking. There areno interlocking pairs whenn = 6, eight
such whenn = 7, seven whenn = 8, and 198 whenn = 9.

Despite the existence of interlocking pairs, whose numbersappear to grow as some complicated function
of n, we know from Theorem 4 that they must be connected inγ(B). Hence, forβk ∈ A′ andβk /∈ A, there
always exists a sequence of meandric movesτ(. . . τ(M)) = [A∗ : B] such that(k, k + 1) ∈ A∗.

Theorem 7. LetB ∈ Bn andβk /∈ B. Then there existsM = [A : B] such thatβk ∈ A.

Proof. The proof essentially inverts the mapρ given in Definition 6. Under rotation, we may assume that
k = 2n. Let B′ be the set of arcs with

(l, l′) ∈ B′ for (1, l), (l′, 2n) ∈ B and 1 < l < l′ < 2n
(i, j) ∈ B′ for (i + 1, j + 1) ∈ B and 1 < i < j < 2n.

ThenB′ ∈ Bn−1 and there existsA′ ∈ An−1 such that[A′ : B′] ∈ Mn−1. Let A be the set of arcs with

(i, j) ∈ A for (i − 1, j − 1) ∈ A′ and 1 < i < j < 2n.

Then by construction[A : B] ∈ Mn.

Consequently, for everyk such thatβk /∈ B, the graphγ(B) has a subgraph isomorphic toγ(B′), where
B′ ∈ Mn−1 as in the proof of Theorem 7. By the proof of Theorem 5, we also know that everyM ∈ γ(B)
is at most distance one from the subgraphs containingρ(M,k − 1 (mod 2n)) andρ(M,k + 1 (mod 2n))
for eachβk ∈ B.

We also have the following result. Although the theorem is animmediate corollary to Theorems 4 and 7,
we give here a constructive proof as the methods illustrate some of the challenges in working with meandric
triples.

Theorem 8. Let M = [A : B] ∈ Mn. For βk /∈ B, there exists a sequences of meandric moves
τ(. . . τ(M)) = [A∗ : B] such thatβk ∈ A∗.
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(Constructive)Proof of Theorem 8.We assume thatk is odd. So form, l 6= k + 1 andm′, l′ 6= k, the
meanderM has the arcs

m ⇁ k ⇀

R
︷ ︸︸ ︷

l . . . l′ ⇀ k + 1 ⇁

R′

︷ ︸︸ ︷

m′ . . . m .

Sinceβk /∈ B, there exists at least one arci ⇀ j in the sequence of arcsR′. If i ⇀ j, k ⇀ l, andk′ ⇀ l′

form a meandric triple for any such arc inR′, then(k, k + 1) ∈ τ(M).
Suppose not. Consider an arci ⇀ j from R′ which hasd arcs fromR which obstruct it from forming

a meandric triple withk ⇀ l, l′ ⇀ k + 1. If d > 2, then operating on a meandric triple from thed arcs
results in aτ(M) which now hasd − 2 obstructing arcs. Hence, we need consider only when there are 1 or
2 obstructing arcs.

Although there are three cases for the ordering of the pointsfrom k ⇀ l and l′ ⇀ k + 1 along the
horizontal line, they are equivalent under rotations and reversals. Hence, we explicitly consider the case
k < k + 1 < l′ < l. Note that the pointsp1, . . . , p2n are divided into three sets by the two arcs,S1 =
{i | 1 ≤ i < k, l < i ≤ 2n}, S2 = {i | k + 1 < i < l′}, andS3 = {i | l′ < i < l}. Theni, j and the
endpoints of the obstructing arcs must all be in one of the three sets. Moreover, the case when they lie inS1

is equivalent toS3.
Suppose there is a single obstructing arca ⇀ b:

k ⇀ l

R
︷ ︸︸ ︷

. . . a ⇀ b . . . l′ ⇀ k + 1

R′

︷ ︸︸ ︷

. . . i ⇀ j . . . .

We explicitly consider the two situations when either

a < j < i < b < k < k + 1 < l′ < l or k < k + 1 < l′ < b < i < j < a < l.

In the second case when the arcs lie inS2, operating onM by a meandric move oni ⇀ j, a ⇀ b, andk ⇀ l
followed by a move on the new meandric triplei ⇀ l, k ⇀ b, l′ ⇀ k + 1 results inβk ∈ τ(τ(M)). We
claim the first case, when the arcs lie inS1, results in a contradiction.

Considern = 4. Then the closed loop would be

k ⇀ l ⇁ a ⇀ b ⇁ l′ ⇀ k + 1 ⇁ i ⇀ j ⇁ k.

However, it is not possible to have the three arcsk + 1 ⇁ i, j ⇁ k andb ⇁ l′ lying below the horizontal
line without intersections. Supposen > 4 and there is a meanderM ∈ Mn containing the arrangement of
four arcs. There exists an additional arci′′ ⇀ j′′ where|i′′−j′′| = 1. Without loss of generality,j′′ = i′′+1
andρ(M, i′′) hasn − 1 arcs. Inductively, though, the arcs inρ(M, i′′) corresponding tok + 1 ⇁ i, j ⇁ k
andb ⇁ l′ intersect.

Suppose now that there are two obstructing arcsa ⇀ b, a′ ⇀ b′ betweeni ⇀ j andk ⇀ l, l′ ⇀ k + 1.
There are two distinct orderings fora, b anda′, b′ along the horizontal line with respect to the other arcs.
When the obstructing arcs lie inS1, one ordering results in a contradiction like the one above while the other
yieldsβk ∈ τ(τ(M)). When the obstructing arcs lie inS2, then both orderings result in a contradiction.

5 Concluding remarks

We now return to the question (briefly motivated in the introduction) of uniformly sampling from the set
Mn of closed meanders of ordern. Theorem 2 suggests a natural ergodic Markov chain, with transition
probability matrixP, on the state spaceMn : given meandersM,M ′ ∈ Mn, we may defineP(M,M ′) to be
positive ifM ′ may be obtained fromM = [A : B], by an (unobstructed arc) local moveσ(A) followed by a
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compensatory local moveσ(B). Recall the definition of these local moves from the beginning of Section 2.
It is also technically convenient to assume that the self-loop probability is positive; that is,P(M,M) > 0,
for everyM ∈ Mn. Both these sets of probabilities will be specified (implicitly) shortly.

The fact thatGn is connected implies that such a Markov chain is ergodic: forevery pair of states,
there is a time by which the probability of visiting one statefrom the other is positive. The self-loop
probability further guarantees aperiodicity – that a high enough power ofP hasall entries positive, which in
turn implies that the Markov chain converges to its so-called stationary distribution onMn. The final fact,
from the basics on finite Markov chains (or from linear algebra) that we appeal to, states that asymmetric
Markov chainhas uniform distribution as its stationary distribution. This suggests a few ways to specify
the off-diagonal transition probabilitiesP(M,M ′), for M 6= M ′, so as to makeP symmetric. One fairly
standard way in Markov chain Monte Carlo methods is to consider the so-calledmaximum-degree random
walk: view the Markov chain, as a random walk on the graphGn Let ∆(Gn) denote the maximum degree
of a vertex (meander) in this graph. Then we may defineP(M,M ′) := 1/∆(Gn), for every adjacent pair
M,M ′, and defineP(M,M) := 1 −

∑

M ′ 6=M P(M,M ′) so as to makeP symmetric and (row and hence
column) stochastic.

There are several other ways to defineP so that it is row and column stochastic, which is also sufficient
to guarantee uniformity of stationary probabilities. However, the seemingly challenging open question we
raise here is whether the above Markov chain (or an analogousone) is “rapidly mixing” on the state space of
Mn – in the sense that, irrespective of the starting state (at timet = 0) the first timeTtv, by which the chain
is within 1/4 (say) in total variation distance of the uniform distribution, is at most polynomial inlog |Mn|.

Note that a corresponding statement for sampling chord diagrams uniformly from the setCn of all chord
diagrams (withn chords) is known to be true (see e.g. [22], ...)

A second question in the same vein would be to sample uniformly from the set of meanders, with a fixed
“bottom” chord diagram. Our main theorem (Theorem 4) provides, once again, a natural way to define an
appropriate Markov chain, using the meandric moves, which converges to the correct (uniform) distribution;
however, the rate of mixing of the chain remains open.
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ETH Zürich. Birkhäuser Verlag, Basel, 2003.

[20] S. K. Lando and A. K. Zvonkin. Plane and projective meanders.Theoret. Comput. Sci., 117(1-2):227–
241, 1993. Conference on Formal Power Series and Algebraic Combinatorics (Bordeaux, 1991).

[21] W. F. Lunnon. A map-folding problem.Math. Comp., 22:193–199, 1968.

[22] L. McShine and P. Tetali. On the mixing time of the triangulation walk and other Catalan structures.
In Randomization methods in algorithm design (Princeton, NJ, 1997), volume 43 ofDIMACS Ser.
Discrete Math. Theoret. Comput. Sci., pages 147–160. Amer. Math. Soc., Providence, RI, 1999.

[23] A. Panayotopoulos and P. Tsikouras. Meanders and Motzkin words.J. Integer Seq., 7(1):Article 04.1.2,
10 pp. (electronic), 2004.

[24] D. Savitt. Polynomials, meanders, and paths in the lattice of noncrossing partitions.Trans. Amer.
Math. Soc., 361(6):3083–3107, 2009.

[25] R. Simion. Noncrossing partitions.Discrete Math., 217(1-3):367–409, 2000. Formal power series and
algebraic combinatorics (Vienna, 1997).
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