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Abstract

We consider a meand@f = [A : B] to be formed from two setd and B of n nonintersecting arcs,
lying above and respectively below a horizontal line, whiih to form a single closed loop. We prove
that the set of meanders is connected under appropriategfdialanced local moves, one operating on
A and the other orB. We also prove that the subset of meanders with a fiad connected under a
suitable local move operating on an appropriately definedndsgc triple in A. We provide diameter
bounds under such moves, tight up to a (worst case) factovaf t

1 Introduction

A closed meander of order is a hon-self-intersecting closed curve in the plane whidsges a horizontal
line at2n points, up to homeomorphism in the plane. The study of mearidesaid to be traceable back to
Poincaré’s work on differential geometry, and has subsetiy arisen in different contexts such as polymer
folding [6, 21, 26] and noncrossing partitions [24, 25]. @bog the number of closed meanders of order
appears reasonably difficult, and the problem remains open.

In this paper, we investigate the relationship among maanaieder appropriate local moves. In this
way, our results are similar to other work studying local mewhich transform one Euler tour into another
in any Eulerian graph [1], one Latin square into another [&A[d one contingency table into another [10].
We consider a meandér = [A : B] to be formed from two setd and B of n nonintersecting arcs, lying
above and respectively below a horizontal line, which jaifdrm a single closed loop. Our results show
that meanders are connected under appropriate pairs dfrfumaes on nested arcs. In the first case, we
operate on bottd and B simultaneously to produc&/’ = [A’ : B’] and in the second we operate twice on
A to produceM” = [A” : B]. Our results also imply a tight (up to a multiplicative canst) upper bound
of 2n on the maximum number of local moves to transform one meant®another.

The paper is organized as follows. In Section 2, we give & loxave on nonintersecting arcs which is
analogous to previously considered local moves on chomgralias [22] and plane trees [16]. We prove that
there exists suitable “balanced” pairs of such moves, omeabipg onA and the other o3, such that the
result is another meander. We also show that the set of mesaisdleonnected under such balanced pairs
of local moves. In Section 3, we extend this approach to idisgpubsets of meanders, since meanders are
partitioned into equivalence classes under “rotation” &edersal.” We consider the relationship among
subsets of meanders with a fixéfl by introducing meandric moves as a local move operation ogeth
arcs which form a meandric triple. We keep the set of arcsvibéte line fixed, and operate ad by a
meandric triple move, an operation which exchanges threefasm A for another triple while preserving
meandricity. Our central result is a theorem which statasitieanders with a fixed set of bottom af¢sire
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Figure 1: The three cases where an(@fc ;") obstructs the arcg, j) and(i’, ;') from each other. Only the
relevant arcs are drawn, and the endpoints are labeledysinithl the integer index.

connected under this meandric triple move. WeyleB) denote the graph whose vertices are all meanders
with a given setB of bottom arcs and whose edges represent a meandric moveg Alith a number of
supporting results, we prove that

Theorem. The graphy(B) is connected.

In Section 4, we then give some characteristics, includignéter bounds, of these newly introduced
meander graphs. Our connectivity results for meander graplgest the potential of sampling uniformly
from the set of all meanders of order using the Markov chain Monte Carlo (MCMC) technique. Hence
we conclude in Section 5 with a brief discussion of the meaadameration problem and uniform sampling
question.

2 Balancing local moves on meanders

We considern pointspy, ..., p2, 0n a fixed horizontal lin€ in the plane, where the poingg occur in
order of increasing index < ¢ < 2n from left to right along the line. Led/ be a closed meander of order
n which intersects at the pointg;, and letM,, denote the set of all such/. See Figure 2 on page 6 for
six of the eight meanders froms.

We note that two combinatorial operations on the poiptshich preserve meandricity aretation, that
IS Pi — Pi—1 (mod 2n), @NAreversal that isp; — pa,+1-i. Up to equivalence under these operations, there
are two distinct meanders in Figure 2 and one distinct agarent of arcs in Figure 1 above.

We considerM to be composed d@n nonintersecting arcs with endpoings, . . ., pa,. We let (s, j)
denote an arc with endpoints andp; for i < j, and note that eagh is the endpoint of two arcs, one lying
above the line and the other below. L&tbe the set of, nonintersecting arcs lying aboveand B the set
lying below. We introduce the notatiald = [A : B] to denote the meand@r with arcsA above the points
p; and arcsB below.

Conversely, consider an arbitrary arrangement ofonintersecting arcs with endpoings, . . . , p2, on
the horizontal lind. Let A,, be the set of all possible arrangements whereithecs lie above, andB,, the
set where all the arcs lie belowLet A € A,, andB € B,,, and consider the set of closed curves formed by
the arcs ofd and B, denoted(A : B). We writec(A, B) = k when there aré closed curves ifA : B).
Whenc(A, B) = 1, then the single closed curvel : B) is a meander and

(A: B)=[A: B]= M forsomeM € M,,.

Whenc(A, B) > 1, then(A : B) form what is known as a system of meanders.
We define a local move operation @i € M,, by first considering an appropriate operatiofy) on a
set ofn nonintersecting arcd € A,. Consider two arc$i, j), (i, j') € A. If i <4', then either

i<j<i<jori<i<j <j.



As illustrated by Figure 1, the operatiorifA) on (i, 7) and(¢’, ;') given below will be well-defined exactly
when the two arcs are unobstructed. We say that) and (i, j') are unobstructedf there is no third arc
(i",5") € Awhere

i<j<i'<i<j<jori<i"<i<ji<j"<jori’"<i<ji<j <i<j.

Let(4,7), (¢,7") € Awith i < i'. Suppose that, j) and(i’, ;') are unobstructed id. Definec(A), or
more explicitlyo; ; ;7 i/(A), as

oo (A) = ANAG, ), (7, 300G, (7, 0)) fi<i <j <j
B ANA{(,9), (@300 {64, G )Y fi<g<i <j -
This operation is analogous to previously considered loeales on chord diagrams [22] and plane trees [16].
We also consides (B) for B € B, and the operation’s effect i : B).

Lemmal. LetA € A,, B € B,,. Then|c(A, B) — c¢(c(A), B)| = 1.

Proof. Suppose:(A, B) = k. Let(i,j) and(i’, /) be the two unobstructed arcs frai\ o (A). If (i,5) and
(¢/,4") lie on the same curve frod : B), thenc(o(A), B) = k + 1. Otherwise, they lie on two different
curves and:(c(A), B) = k — 1. O

By symmetry, we have the same result éa3). Thus, for every meandevl = [A : B], we have that
c(o(A),B) =2andc(A4,0(B)) = 2.

Theorem 1. Let M = [A : B] € M,,. For every pair of unobstructed arcs iA there exists a pair of
unobstructed arcs i such thatc(o(A),o(B)) = 1.

We call the local move (B) a compensatory local move fof A) and refer to the pair as balanced. The
result claims that there always exist a compensatory dperan B, so that we may consider the effect of
transitioning between meandek$ = [A : B] and M’ = [0(A) : o(B)] connected by balanced pairs of
local moves.

To prove Theorem 1, we introduce different notation for diéseg the2n arcs which make up a meander
or system of meanders in the plane. et A,, and observe that — i is odd for every ardi, j) € A. If
1 is odd, then we denote this arc ast j and asj A otherwise. Similarly, but with the reversed parity,
every(2i,2j — 1) € B is written2i S 2j — 1 and every(2j — 1,2i) € B is also denotedi s 25 —1.1In
this way, a meander can be written as an ordered, alternsd¢iggence of arcs from and B:

1292, 895, 1292, 8 Boj 149, B1-9j -1
for 1 <, jr < n. Typically, we drop thed and B designation and simply write:
1—2iy —2j0—1—2ip — ... = 2j, — 1 — 2¢,, — 1.

We note that a system of meanders can be written as a set obstleted, alternating sequences of arcs
from A and B.

Proof of Theorem 1Let M = [A : B] € M,,. Suppose that — j andi — j’ are two unobstructed arcs
from A. It suffices to show that there exist unobstructed &res [ andk’ — I’ from B with

i—j.. k—l...d =7  K=U.. —i

for the sequence of ordered, alternating akés= [A : B]. LetS be the set of integers which occur in
the sequence of args— ... — ¢ and S’ be the set occurring i — ... — 4. ThenS and S’ are a
partition of the integerg§1,2,...,2n} and, without loss of generality, there exigtss S and!’ € S’ such
that|k — I'| =1 (mod 2n). Thus the arcé& — [ andk’ — I’ are unobstructed . O

3



We make the previous discussion concrete by considerindotlusving example. It will be useful at
times to adopt the familial terminology from rooted treegdter to the nesting of arcs. Consider two arcs
(i,7) and(4’, 7") with « < . When there are no obstructing edges and i/ < j' < j, then(s, j) is the
parent of its child#’, j'). Otherwise; < j < ¢’ < j/ and the two unobstructed arcs are siblings. Ancestors
and descendants refer to arcs with a chain of parent/chédioaships. For simplicity, we consider all arcs
(i,7) with 1 < ¢ < j < 2nto be descendants of an (unexpressed) primordialtaé + 1). We note that if
(i,7) and(¢’, 7') are unobstructed, therandi’ have opposite parity exactly when they are parent and child.

Example 1. Let A = {(1,2),(3,4),(5,6),(7,8)} and B = {(1,8),(2,3), (4,5),(6,7)}. Together they
form the meanded = [A : B] with the single closed loop -~ 2 — 3 -4 —-5—~6 -7 —~ 8 —

1. Consider the local move on the unobstructed &) and (5,6) in A resulting ino(4) = A’ =
{(1,6),(2,5),(3,4),(7,8)}. We note that the local move replaces sibling aft2), (5,6) € A with the
parent/child arcg1,6), (2,5) € A’. Now (A’ : B) form a system of meanders withA’, B) = 2 consisting
of the pair of closed loops -~ 6 — 7—8 — 1and3 -4 — 5 — 2 — 3. Thearc® — 3andl — 8 must
be unobstructed itB so we have the compensatory local mey®) = B’ = {(1,2), (3,8), (4,5), (6,7)}
such thatc(A’, B) = 1. Hence, we have the meandel’ = [A’ : B’] consisting of the single closed loop
1-6—-7—-8—-3—~4—-5—-2—-1.

We note that the proof of Theorem 1 guarantees the existeratdemst one balanced paifA), o(B).
In general, there may be many such compensatory operatiolis &or instance, in the previous example
there are three other local moves Brwhich also yield a meandéi/’ = [o(A) : o(B)]. We now consider
the relationship among meanders when we operate on thelaygs and below the horizontal line by pairs
of balanced local moves.

Definition 1. LetG,, be the graph whose vertices até¢, M’ € M,, and whose edges conneldt = [A : B|
andM' = [o(A) : o(B)].

Theorem 2. The graphg,, is connected.

Proof. LetU,, = {(2i — 1,2i) | 1 < i < n}andL, = {(1,2n),(2i,2i +1) | 1 < i < n}. Then
[U, : L,) € M,,. ForM = [A: B] € M,, there exists a sequence of local movesbsuch that
o(...0(A)) = U,. By Theorem 1, for each local move on the upper arcs, therec@mmgpensatory local
move on the bottom. O

We note that an alternative proof of Theorem 2 follows from ¢lonnection between meanders and pairs
of noncrossing partitions, see [12, 13] as well as [15, 24thht context, the grapf, is the Hasse diagram
of the induced patrtial order.

3 Graphing meandric triple moves

Now, we extend our approach from the full gragh to disjoint subsets of meanders. We e B,, and
consider the graph(B) of the relationship among the meandéfs= [A : B] € M,, under some suitable
local move. Our interest in this problem arises from the egjence of meanders under the operations of ro-
tation and reversal, and the potential for investigatirggdbmbinatorics ofy(B) for different representative

B € B,,. Here, we show that the subset of meanders with fi2édgl connected under a local move operation
on three arcs which form a meandric triple.

Definition 2. Let: — j,7 — 5/, and’ — j” be three arcs fromd € A,,. The three arcs are a meandric
triple if exactly two of the three pairs of arcs are unobstec:



Assuming no other obstructing arcs, Figure 1 on page 2 iltes$ the three possible configurations for
a meandric triple — which are equivalent under rotation aveirsal.

Theorem 3. LetM = [A : B] € M,,, and suppose there is a meandric tripledn There exists a sequence
of two local moves on the meandric triple such that(c(A)), B) = 1.

Proof. Leti — j, 7 — 4/, andi” — j” be a meandric triple fromd where: — j and? — ;' are
unobstructed; — j and:” — j” are unobstructed, and

R R
24jf/\z/éjl\f/,l//4]//,./\

R/
Suppose that
M <i<g <i <j<i

Since the arcéi, j) and(j’, ') are unobstructed id, the local mover; ; ;: +(A) is well-defined. Moreover,
the arcs(i, ) and (¢, j) are both unobstructed froity”,i") € o(A). We operate on the ardg’, j) and
(4”,4") to obtain(j", '), (j,i") € o(c(A)). Thus,c(c(c(A)), B) = 1 and we have the meander

R R//
z‘éj’vz’” —jnt = A

R/
There are six different cases for the orderingpgfp;, ... along the horizontal liné. Under rotation,

Pi — DPi—1 (mod 2n), there are two distinct equivalence classes. Under reféeiga— pa,1-i, those two
classes are equivalent. O

Definition 3. Let M = [A: B] € M,, andi — j,7 — j/, andi’ — j” be a meandric triple inA with
i—j...i7 =4 ... — j”.... Define a meandric move oW, denotedr (M), as the sequence of two
local moves which results in the meanddt = [o(c(A)) : B] where the meandric triple inl is replaced
byi — 5/, — j,andi — j” ino(c(A)).

Definition 4. For B € B,, lety(B) be the graph whose vertices até = [A : B] € M,, and whose edges
connectM and(M).

Theorem 4. For B € B, the graphy(B) is connected.
The proof of Theorem 4 follows from Theorems 5 and 6, and tilevidng related definitions.
Definition 5. Let 3; be the arc(i,i + 1) for 1 < i < 2n and (2, = (1,2n).

Theorem 5. For M = [A : B] € M, with 8, € B, Bx_1 (mod 20) ¢ A, there exists a meandric move
(M) = [A": B] such thatB;, 1 (mod 2n) € 4"

We have the following immediate dual result under reversals— p.,+1_;, which preserve meandric
triples.

Corollary 1. For M = [A : B] € M, with B, € B, Bi41 (mod 2n) ¢ A, there exists a meandric move
(M) = [A": B] such that, 1 (mod 2n) € A

Definition 6 makes precise the intuitive notion of contragta bumps; from A and the two connecting
arcs inB to produce a reduced meander of order 1.
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Figure 2: The six meanders froms which are connected under pairs of local moves on meandpiest
(The other two meanderf/s : Ls] and[Ls : Us], have no meandric triple.) Although the endpoints are not
labeled, we note the equivalences under rotatipnsy p;_1 (mod 2n), @nd reversalgy; — pap1--

Definition 6. LetM = [A : B] € M,,. For 32, € A, definep(M, 2n) to be the meanddrd’ : B'| € M,,_4
with

(L,IYe B for (1,1),(I',2n)e B and 1<Ii<l'<2n
and, forX = A, B, with

(1,7) e X' for (i+1,j+1)e X and 1<i<j<2n.

For 5, € Awith1 < k < 2n, definep(M, k) to be the meanddrd’ : B'] € M,,_; with

(", )e B" for (I'k+1),(I,k)eB and 1<!I'<l<k<k+1<2n

(L,LIYe B for (Lk),(k+1,I')eB and 1<I<k<k+1<l<2n

(I",1)e B for (k,0),(k+1,'))eB and 1<k<k+1<l'<l<2n
and, forX = A, B, with

(t,j)e X and 1<i<j<k<k+1<2n
(i,7) € X' whenever (i,j+2)eX and 1<i<k<k+1<j+2<2n
(i4+2,7+2)eX and 1<k<k+1<i+2<j+2<2n.

If B, ¢ A, thenp(M, k) is not defined.
Theorem 6. The operatiorp : M,, x {1,2,...,2n} — M,,_; is well-defined.

Assuming Theorems 5 and 6, whose proofs are given below, wepnove Theorem 4.



Proof of Theorem 4Forn > 3, let B € B,, and considet\/ = [A : B], N = [C' : B] € M,,. We claim
that M/ and N are connected in(B) by a sequences of meandric moves.

There exists at least ofig € B. Letj = k—1 (mod 2n) and suppose that; ¢ AUC. By Theorem 5,
there exist a meandric mowé /) = M’ = [A’ : B] and a meandric move(N) = N’ = [C’ : B] such
that3; € A'nC’".

Observe that; obstructs no arcs in eithet’ or C’. By induction,p(M’, j) andp(N’, j) are connected
by a sequence of meandric moves. Hence, there exists a seqoemeandric moves on the— 1 upper
arcs of M’ which leaves the arg; € A’ N C’ fixed and which connects/’ to N'. O

Proof of Theorem SUnder the rotational equivalengge — p;_1 (mod 2,), W& May assume without loss of
generality that2n — 1,2n) € B, (2n —2,2n—1) ¢ Afor M = [A : B] € M,,. We claim that there exists
7(M) =[A": B] € y(B) such tha{2n — 2,2n — 1) € A’.

The arcs

(,2n),(I',2n —1),(1",2n —2) € Awith1 <I<l'<l"<2n—-2<2n—-1<2n

are a meandric triple with
l=2n—=2n—-1—=0..0"=2n—2....

After operating on this meandric triple, we have
=0 0"=2n—=2n—-1—2n—-2....
O

Proof of Theorem 6Let M = [A : B] € M,,. We claim that for5;, € A, the mapo(M, k) is well-defined.
Suppos€1,2n) € A. The arcs ofA and B form the meandei/:

l—1—2n—10U...j —i—j—i.. .

Then
l=1.. (=1 =(-1)=G—-1) =@ —1)...

is the meandep (M, 2n) = [A’ : B'] since
A={(i-17-1)]3Gj)eAl<i<ji<2n}eAd,
and
B ={(i—-1,7-1)|(,5) €eB,1<i<j<2n}Uu{,l')],1),(I',2n) € B} € B,_1.

The case whe(k, k + 1) € Afor 1 < k < 2n is similar, although the shifting of the endpoint indices
for an arc(i, j) from M depends on the ordering ofandj with respect tok. Deleting the ardk, k + 1)
from A, replacing the two arcs with endpointsandk + 1 in B with a new arc, and these shifts in indices
introduce no intersections. Heneé € A,,_1, B’ € B,_1,and[A’ : B'] = p(M, k) € M. O

4 Some characteristics of meander graphs

We note that the proof of Theorem 4 implies that the diamédter 8) is at mostn for B € B,,. This upper
bound is never achieved since oK n < 8, the maximum diameter of(B) isn — 2.



Example 2. Whenn = 9, there is exactly one (nonisomorphic) pair of meandets: B] and [A" : B
whose geodesic hasmeandric moves in(B):

B = {(1,10),(2,9),(3,8),(4,5),(6,7), (11,18), (12,17), (13,14), (15,16)}
A = {(1,16),(2,15), (3,14), (4,13), (5,12), (6 11),(7,10),(8,9), (17,18)}
A" = {(1,4),(2,3),(5,18),(6,17),(7,16), (8,15), (9, 14), (10, 13), (11,12) }

This is the only pair of meanders, up to rotation and reversahose geodesic has length greater than
n — 2 forn = 9. Whenn = 10, there are three nonisomorphic pairs with length 9.

We contrast this with the diameter— 1 of G,, from Definition 1. Recall thatj,, is the graph of all
meandersM/ = [A : B] € M,, connected under balanced local moves\f6 = [0(A) : o(B)]. Let

=[A: B],M' =[A": B'] € M,, be two arbitrary meanders. H, € A’, there is always a local move
such that3;, € o(A) and a compensatory local mowéB) such thafo(A) : o(B)] € M,,. This is not the
case for meandric moves; the smallest example is the faligwi

Example 3. Whenn = 5, there is exactly one (nonisomorphic) pair of meandéfs= [A : B] and
M’ = [A": B] such that for every), € A there exists ne(M') = [A” : B] with 8, € A”, and vice versa:

B = {( ) )7(279)7(378)7(4 7)7(5’6)}
A = {( ) )7(273)7(57 10) ( )7(778)}
A = {( ) )7 (27 5)7 (37 4) (7 10)7 (8’ 9)}

We say that such a pair of meanders is interlocking. Theraaiaterlocking pairs when = 6, eight
such whem = 7, seven whem = 8, and 198 whem = 9.

Despite the existence of interlocking pairs, whose numaepear to grow as some complicated function
of n, we know from Theorem 4 that they must be connecteg(i8). Hence, forg, € A’ andj;, ¢ A, there
always exists a sequence of meandric maves. 7(M)) = [A* : B] such thatk, &k + 1) € A*.

Theorem 7. Let B € B,, and 5, ¢ B. Then there exist8/ = [A : B] such thatgy, € A.

Proof. The proof essentially inverts the mapiven in Definition 6. Under rotation, we may assume that
k = 2n. Let B’ be the set of arcs with

L,I"ye B for (1,1),(I',2n)e B and 1<l<l' <2n
(i,j)e B" for (i+1,j+1)eB and 1<i<j<2n.

ThenB’ € B,,_; and there existsl’ € A,,_; such thafA’ : B'] € M,,_;. Let A be the set of arcs with
(i,j) e A for (i—1,7—1)e A and 1<i<j<2n.
Then by constructiofA : B] € M,,. O

Consequently, for ever such that3, ¢ B, the graphy(B) has a subgraph isomorphict9B’), where
B’ € M,,_; as in the proof of Theorem 7. By the proof of Theorem 5, we atsmkthat everyM € (B)
is at most distance one from the subgraphs contaipiid, k — 1 (mod 2n)) andp(M,k + 1 (mod 2n))
for eachg, € B.

We also have the following result. Although the theorem isnamediate corollary to Theorems 4 and 7,
we give here a constructive proof as the methods illustrateesof the challenges in working with meandric
triples.

Theorem 8. Let M = [A : B] € M,. For By ¢ B, there exists a sequences of meandric moves
7(...7(M)) = [A* : B] such that3;, € A*.



(Constructive)Proof of Theorem 8We assume that is odd. So form,l # k + 1 andm/,l’ # k, the

meanderl/ has the arcs
R R
—~ ——
m—k—=101...I'~k+1—m'...m.

Sincef; ¢ B, there exists at least one are~ j in the sequence of ard®'. If i — j, k — [, andk’ — I
form a meandric triple for any such arc i, then(k, k + 1) € 7(M).

Suppose not. Consider an are~ j from R’ which hasd arcs fromR which obstruct it from forming
a meandric triple withk — [, " — k + 1. If d > 2, then operating on a meandric triple from tti@rcs
results in ar (M) which now hasi — 2 obstructing arcs. Hence, we need consider only when ther& ar
2 obstructing arcs.

Although there are three cases for the ordering of the pdiote & — [ and!’ — k + 1 along the
horizontal line, they are equivalent under rotations angnsals. Hence, we explicitly consider the case
k < k+1 < I' <. Note that the pointg, ..., po, are divided into three sets by the two arss, =
{i|1<i<kl<i<2n},Sy={i|k+1<i<l} andS; = {i|!' <i <1} Theni,jand the
endpoints of the obstructing arcs must all be in one of theetlsets. Moreover, the case when they ligin
is equivalent taSs.

Suppose there is a single obstructing are: b:

R R’
/ Ny / . . \
k—=l...a—=b...ll = k+1...0—~7....

We explicitly consider the two situations when either
a<j<i<b<k<k+l<l<lok<k+l<l<b<i<j<ac<l.

In the second case when the arcs ligin operating onV/ by a meandric move oh— j, a — b, andk — [
followed by a move on the new meandric triple~ [, k — b, ' — k 4 1 results ingy € 7(7(M)). We
claim the first case, when the arcs liedn, results in a contradiction.

Considermn = 4. Then the closed loop would be

However, it is not possible to have the three dcs 1 — i, j — k andb — [’ lying below the horizontal
line without intersections. Suppoge> 4 and there is a meandéf < M, containing the arrangement of
four arcs. There exists an additional @fc— ;" where|i” — j”| = 1. Without loss of generality;” = i" +1
andp(M,i") hasn — 1 arcs. Inductively, though, the arcs @M, ") corresponding té& + 1 — i, j — k
andb — [’ intersect.

Suppose now that there are two obstructing ares b, a’ — V' betweeni — j andk — [,I' — k + 1.
There are two distinct orderings far b anda’, b’ along the horizontal line with respect to the other arcs.
When the obstructing arcs lie i}, one ordering results in a contradiction like the one abokidenthe other
yields g € 7(7(M)). When the obstructing arcs lie #b, then both orderings result in a contradictiori]

5 Concluding remarks

We now return to the question (briefly motivated in the introtion) of uniformly sampling from the set
M,, of closed meanders of order Theorem 2 suggests a natural ergodic Markov chain, withsttian
probability matrixP, on the state spackt,, : given meanderd/, M’ € M,,, we may definé’(M, M) to be
positive if M" may be obtained from/ = [A : B], by an (unobstructed arc) local moweA) followed by a



compensatory local mowe(B). Recall the definition of these local moves from the begigrihSection 2.
It is also technically convenient to assume that the selfrlprobability is positive; that iSP(M, M) > 0,
for every M € M,,. Both these sets of probabilities will be specified (implgishortly.

The fact thatG,, is connected implies that such a Markov chain is ergodic: ef@ry pair of states,
there is a time by which the probability of visiting one stéitem the other is positive. The self-loop
probability further guarantees aperiodicity — that a higbwgh power of® hasall entries positive, which in
turn implies that the Markov chain converges to its so-cafiationary distribution oM ,,. The final fact,
from the basics on finite Markov chains (or from linear alggkthat we appeal to, states thasyanmetric
Markov chainhas uniform distribution as its stationary distributionhig suggests a few ways to specify
the off-diagonal transition probabiliti€B(M, M), for M # M’, so as to mak& symmetric. One fairly
standard way in Markov chain Monte Carlo methods is to carside so-calleadnaximum-degree random
walk view the Markov chain, as a random walk on the gr@phLet A(G,,) denote the maximum degree
of a vertex (meander) in this graph. Then we may defitg/, M’) := 1/A(G,), for every adjacent pair
M, M', and defineP(M, M) := 1 — 3", P(M, M') so as to mak& symmetric and (row and hence
column) stochastic.

There are several other ways to defihgo that it is row and column stochastic, which is also sufficie
to guarantee uniformity of stationary probabilities. Hewe the seemingly challenging open question we
raise here is whether the above Markov chain (or an analogog)sis “rapidly mixing” on the state space of
M., —in the sense that, irrespective of the starting stater(a#ti= 0) the first timeT;., by which the chain
is within 1/4 (say) in total variation distance of the uniform distritmrtj is at most polynomial itog | M,, |.

Note that a corresponding statement for sampling chordraiag uniformly from the sef,, of all chord
diagrams (withn chords) is known to be true (see e.g. [22], ...)

A second question in the same vein would be to sample unifoimom the set of meanders, with a fixed
“bottom” chord diagram. Our main theorem (Theorem 4) pregidonce again, a natural way to define an
appropriate Markov chain, using the meandric moves, whiciverges to the correct (uniform) distribution;
however, the rate of mixing of the chain remains open.
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